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Development of Electromagnetic Wave Absorption 

Properties of Graphene-Based Nanocomposites by 

Using Stochastic Optimization Methods 

 

Abstract 

Today, with the developing telecommunications and electronic technologies for 

civilian and military purposes, electromagnetic (EM) applications have a wide usage 

area, including different frequency ranges, such as radar, wireless information transfer, 

and medical technologies, as well as radio frequencies. However, the broad use of 

these technologies causes EM wave pollution, so they have a devastating effect not 

only on the working functionalities of electronic devices but also on human health. 

Therefore, the need to develop these technologies to prevent EM wave pollution is 

increasing daily. In line with this need, numerous studies have been recently conducted 

to develop EM interference (EMI) shielding composite materials. Generally, it is 

aimed to achieve maximum absorption performance with minimum reflection to 

develop EMI shielding composites. On the other hand, the increase in the number of 

parameters affecting the performance of these materials also increases the time and 

cost required for experimental studies. In this case, mathematical and statistical 

approaches play a crucial role in contributing to experimental studies to reduce time 

and cost. 
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In this thesis study, it is intended to develop a graphene foam/MnO2 nanowire 

composite structure as an EMI shielding material in order to apply a comprehensive 

design-modeling-optimization study to the field of materials science. In line with this 

aim, hydrothermal process parameters (temperature, time, molar ratio) were 

determined as the design variables of the optimization problem, and the effects of these 

parameters on the EMI shielding effectiveness (SE) of the nanocomposite structure 

were investigated. Moreover, the objective of the problem was defined as maximizing 

the absorption effectiveness of nanocomposite while conserving minimum reflection 

effectiveness. Data modeling processes were performed via a nonlinear neuro-

regression approach to achieve a robust objective function for the defined optimization 

problem. In the optimization stage of this study, four different stochastic optimization 

algorithms (Simulated Annealing, Differential Evolution, Nelder-Mead, Random 

Search) were utilized simultaneously to obtain global optima. It is envisaged that this 

thesis study would make big contributions to the design-based optimization studies in 

the materials science subject. 

Keywords: graphene-based nanocomposite, electromagnetic interference shielding, 

materials design, neuro-regression approach, stochastic optimization  
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Grafen Tabanlı Nanokompozitlerin Elektromanyetik 

Dalga Soğurma Özelliklerinin Stokastik Optimizasyon 

Yöntemleri Kullanılarak Geliştirilmesi  

 

Öz 

Günümüzde, sivil ve askeri amaçlarla kullanılmak üzere geliştirilmekte olan 

haberleşme ve elektronik teknolojileri ile birlikte elektromanyetik (EM) uygulamalar, 

radyo frekanslarının yanı sıra mikrodalga, radar, kablosuz bilgi transferi ve tıbbi 

teknolojiler gibi farklı frekans aralıklarını içeren geniş bir kullanım alanına sahiptir. 

Söz konusu teknolojilerin yaygın kullanımı EM dalga kirliliğine yol açarak, elektronik 

cihazların kullanım fonksiyonlarının yanı sıra insan sağlığı üzerinde de olumsuz 

etkilere sahiptir. Bundan dolayı, EM dalga kirliliğinin engellenmesine yönelik 

teknolojilere duyulan ihtiyaç gün geçtikçe artmaktadır. Bu ihtiyaç doğrultusunda son 

yıllarda EM girişim koruyucu kompozit malzemelerin geliştirilmesine yönelik birçok 

çalışma yapılmaktadır. EM girişim koruyucu kompozit malzemelerin geliştirilmesi 

için genel olarak minimum yansıtma ile maksimum soğurma performansının elde 

edilmesi amaçlanmaktadır. Öte yandan, bu malzemelerin söz konusu performansını 

etkileyen parametre sayılarındaki artış, deneysel çalışmalar için gerekli olan zaman ve 

maliyeti de artırmaktadır. Bu durumda, matematiksel ve istatistiksel yaklaşımlar, 

zaman ve maliyeti azaltmak için deneysel çalışmalara katkıda bulunma konusunda 

büyük bir rol oynamaktadır. 

 



vi 

 

Bu tez çalışmasında, kapsamlı bir tasarım-modelleme-optimizasyon çalışmasının 

malzeme bilimi alanına uygulanması adına EM girişim koruyucu malzeme olarak 

grafen köpük/MnO2 nanotel kompozit yapısının geliştirilmesi amaçlanmıştır. Bu amaç 

doğrultusunda, hidrotermal üretim parametreleri (sıcaklık, zaman, molar oran), 

optimizasyon probleminin tasarım değişkenleri olarak belirlenmiş ve bu 

parametrelerin nanokompozit yapının EM girişim koruma özelliği üzerindeki etkileri 

incelenmiştir. Ek olarak, optimizasyon probleminin amacı, nanokompozit yapıdan 

minimum yansıtma etkinliğini korurken maksimum soğurma etkinliği elde etmek 

olarak belirlenmiştir. Tanımlanan optimizasyon problemi için yüksek tahmin 

kabiliyetine sahip bir amaç fonksiyonu elde etmek adına lineer olmayan nöro-

regresyon yaklaşımı ile veri modelleme süreçleri gerçekleştirilmiştir. Çalışmanın 

optimizasyon aşamasında, global optimum değerlerini elde etmek için dört farklı 

stokastik optimizasyon algoritması (Simulated Annealing, Differential Evolution, 

Nelder-Mead, Random Search) eş zamanlı olarak kullanılmıştır. Bu tez çalışmasının, 

malzeme bilimi ve mühendisliği alanında gerçekleştirilecek tasarım tabanlı 

optimizasyon çalışmalarına büyük katkılar sağlayacağı öngörülmektedir. 

Anahtar Kelimeler: grafen tabanlı nanokompozitler, elektromanyetik girişim 

koruma, malzeme tasarımı, nöro-regresyon yaklaşımı, stokastik optimizasyon 
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Chapter 1 

Introduction 

1.1 Literature Survey 

The electromagnetic (EM) wave absorption phenomenon recently had a great interest 

due to the need to decrease EM wave pollution from ever-growing electronic 

technologies used for several purposes. The detrimental effect of EM waves is known 

as EM interference (EMI) which is influential on human health in addition to the 

working of electronic devices. [1]. The EMI shielding term corresponds to a barrier 

for radio or microwave radiations to prevent their penetration [2]. Therefore, there is 

a high study interest in developing materials to enhance EMI shielding effectiveness 

(SE). 

EM waves interact with materials mainly through reflection and absorption [3-5]. The 

EM wave reflection occurs on the material’s surface because the charge carriers 

interact with the EM field. At the same time, absorption happens when electrical or 

magnetic dipoles interact with the EM field in the radiation. Additionally, absorbed 

EM waves by the medium are turned into thermal energy. Both of them are dependent 

on the electrical conductivity of the material. Another interaction of EM waves with 

the materials is multiple internal reflections that end up with the EM wave absorption 

by scattering at various interfaces within the material [5]. Moreover, the SE is 

attributed to the power loss realized by the EM radiation interaction with the material 

[2]. The total SE (SET) involves mainly two interaction ways as absorption 

effectiveness (SEA) and reflection effectiveness (SER). In addition, SE arising from the 

multiple internal reflections (SEM) is another mechanism, which is negligible when 
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SET is greater than 15 dB. The SET interaction mechanism relationship can be 

represented by the following equations [2]: 

 𝑆𝐸𝑇 = −10 log10 |𝑆21|2 (1.1) 

 𝑆𝐸𝑅 = −10 log10(1 − |𝑆11|2) (1.2) 

 𝑆𝐸𝑇 = 𝑆𝐸𝐴 + 𝑆𝐸𝑅 + 𝑆𝐸𝑀 (1.3) 

 𝑆𝐸𝑇 = 𝑆𝐸𝐴 + 𝑆𝐸𝑅    (𝑤ℎ𝑒𝑛 𝑆𝐸𝑇 > 15 𝑑𝐵) (1.4) 

In the related equations, the square of scattering parameters (S-parameters), |𝑆11|2 and 

|𝑆21|2, denote the reflection and transmission coefficient, respectively, which should 

be considered as the fraction of the input powers during calculations instead of the dB 

unit [2]. The relevant S-parameters are obtained from the measurement via network 

analyzer instrument in a specific frequency bandwidth. 

As seen from the abovementioned equations, both absorption and reflection of EM 

waves are directly proportional to the material’s SET. Thus, improving both SER and 

SEA mechanisms is a way to increase the SET of materials. However, the reflection is 

undesirable because it causes secondary EM pollution. Likewise, in the defense 

industry, the absorption capability is significant for stealth technology to prevent EM 

waves reflected from the target structure from reaching the receiving antenna by 

reducing the radar cross-section (RCS) [6, 7]. Therefore, absorption-dominant 

shielding materials must be developed, with the minimum SER as far as possible, for 

effective EMI SE characteristics.  

In general, absorbing materials used to reduce unwanted EM waves should meet the 

properties such as lightness, low density, resistance to corrosion and high absorption 

in a wide frequency bandwidth [6, 8]. In addition, radar-absorbing materials (RAMs) 

with high thermal conductivity are desirable in stealth technology to prevent the target 

structure from being detected by thermal sensors due to the conversion of EM waves 

absorbed by the medium into thermal energy [6]. However, traditionally used materials 
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such as magnetic metal particles (e.g., iron, cobalt), ferrite and carbonyl iron powders 

are insufficient to provide high performance by meeting desirable features alone 

because of their disadvantages such as low stability, high density and low corrosion 

resistance [9-11]. Therefore, studies to develop absorber and shielding materials have 

recently focused on carbon-based nanomaterials such as carbon nanotubes (CNT) and 

graphene, which have properties such as low density, high corrosion resistance and 

high strength [6, 8, 10, 12]. Among these nanomaterials, graphene, presented to the 

literature for the first time in 2004, is a material consisting of one or more layers of 

graphite formed by sp2 hybridization of carbon atoms in a honeycomb-shaped 

hexagonal crystal lattice [13]. Graphene is preferred in many fields due to its high 

electron mobility, large surface area, and high electrical and thermal conductivity, and 

also frequently studied as an EM wave absorber material [8, 10, 14-17]. 

Furthermore, graphene is generally preferred in foam structures to meet the 

requirements of EMI shielding materials. Graphene foam (GF) provides a continuous 

network of flawless graphene sheets with high electrical conductivity without the 

formation of junction resistance [18]. In addition, GF has a high porosity of 

approximately 99.7%, making it an ideal material for use as a supporting surface 

compatible with other materials by creating synergistic effects [19]. There are sorts of 

production methods reported in the literature for graphene synthesis, which can be 

classified into two main approaches, bottom-up and top-down. Top-down methods 

such as chemical exfoliation, micromechanical separation and liquid phase exfoliation, 

in which graphite is used as a raw material, suffer from obtaining low-quality 

graphene, containing toxic chemical components, and therefore are unsuitable for 

commercial use [20]. On the contrary, the chemical vapor deposition (CVD) method 

is a bottom-up approach suitable for industrial applications due to its cost-

effectiveness, high-quality, large surface area, and continuous graphene structure 

production. [17, 21-26]. However, graphene-derived structures are designed as EM 

wave absorber and EMI shielding materials mostly contain graphene oxide (GO) and 

reduced graphene oxide (rGO) foams [12, 27-29]. The fact that GO and rGO have low-

quality limits their EM wave absorption property. On the contrary, CVD-based GF has 

significant potential as a shielding material with high electrical conductivity owing to 

its high quality. In addition to the advantages of graphene, its high electrical 

conductivity causes an impedance mismatch between the structure and free space. 
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Therefore, the desired performance cannot be achieved when graphene is used alone 

as shielding material [30]. To overcome the impedance mismatch, graphene can be 

combined with nanomaterials such as zinc oxide (ZnO), magnetite (Fe3O4), and 

manganese dioxide (MnO2) by designing as hybrid structures to obtain the desired EM 

wave absorption characteristics [13, 30-33]. 

MnO2 is one of the most common-used metal oxides in several applications, such as 

energy storage and photocatalytic applications, due to its high surface area, 

environment friendliness, natural abundance, and low cost [34-39]. The basic unit of 

MnO2 is formed by an octahedral close-packed structure (MnO6). Accordingly, several 

crystallographic derivatives (e.g., δ, β, and α) of MnO2 can be achieved by linking 

octahedral units differently [40-42]. In general, there are some methods to synthesize 

MnO2 nanostructures, such as electrochemical synthesis, hydrothermal, and sol-gel 

methods [43-45]. Among these techniques, hydrothermal is a cost-effective method 

that allows simple nanostructure synthesis in low temperatures. Moreover, the most 

effective crystal and morphologic structure for the relevant applications can be 

achieved by controlling hydrothermal process parameters (e.g., temperature, time, and 

solution concentration). MnO2 is also an ideal candidate to be used as an EM wave 

absorber owing to its functionality offers a choice to optimize the absorption 

characteristic through materials design since its features differ depending on both its 

morphological and crystallographic forms. For example, in the study by Song et al., 

the EM wave absorption performance of different morphological and crystalline 

phases of MnO2 nanomaterials (α-MnO2 nanowire, α-MnO2 microsphere, δ-MnO2 

nanowires, δ-MnO2 microspheres) were compared [45]. It is found that the α-MnO2 

has a higher dipolar moment than other phases, and the best EM wave absorption was 

achieved from the α-MnO2 nanowire. The high performance of the nanowire form was 

attributed to its high surface area and having more trapping sites for the EM wave. 

However, because MnO2 nanostructures are insufficient to meet the requirement of 

absorbers alone, they are combined widely with suitable materials, such as graphene, 

to obtain an effective EM wave absorption performance [46-49]. By keeping the 

abovementioned considerations of the relevant materials in mind, this thesis study is 

focused on developing the CVD-based graphene foam/MnO2 nanowire (GF/MnO2 

NW) composite structure as an effective EMI shielding materials. 
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Furthermore, materials’ EMI SE capability depends on several variables, such as the 

incident wave frequency, thickness of the structure, and the amount and size of the 

material included in the structure [50-52]. The increase in the number of variables in 

such engineering problems leads to a rise in the raw material consumption, time, and 

cost required for the experimental process. Hence, obtaining the interactions between 

the variables required to achieve the desired performance by experimental methods 

becomes challenging. A systematic mathematical optimization approach considering 

the applications’ requirements can help to overcome this problem. Therefore, 

obtaining a robust objective function for the specified problem is crucial in accurately 

defining the physical phenomenon. At this point, data science plays a big role in 

materials science. Therefore, data-driven modeling approaches have been frequently 

utilized by researchers recently to design, develop, and discover new materials [53-

55]. In the literature, there are great efforts to develop a method to achieve a robust 

model to estimate the phenomenon realistically and reliably. Therefore, statistical and 

mathematical-based approaches such as artificial neural networks (ANN), response 

surface methodology (RSM), and regression analysis (RA) have been used for the 

design of EM wave absorbers [56-63]. These methods are utilized to attain a function 

that includes the correlation between parameters and probable outcomes of 

experiments. For example, in the study by Nasouri et al., a carbon nanotube/polyvinyl 

alcohol (CNT/PVA) hybrid nanofiber structure is used as EMI shield material [64]. 

The effects of CNT concentration (x1), structure thickness (x2), and EM wave 

frequency (x3) on the EMI properties of the structure were examined. It is stated that 

the RSM is used to model and optimize the EM wave absorption and reflection 

properties of the hybrid nanofiber structure. Thus, they obtained two objective 

functions by expressing the absorption and reflection properties of the structure with 

quadratic polynomial functions depending on x1, x2, and x3. It is reported that the 

structure will show maximum EM wave absorption performance with minimum EM 

wave reflection when the design variables x1, x2, and x3 have 7.7 wt.%, 3 mm and 12 

GHz values, respectively. 

Salah et al. used the ANN to predict the EM wave absorption property of the 

polycarbonate/CNT (PC/CNT) composite structure depending on different weight 

percentages of carbon nanotube [65]. According to the outputs of the method used in 

the study, it has been estimated that the PC/CNT composite structure containing 5 
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wt.% CNT concentration will reach the best EM wave absorption index. In another 

study by Green et al., a data-driven approach was used to build a predictive model to 

achieve an optimum microwave absorption performance of polypyrrole/paraffin 

composite [66]. The objective of the problem is designated to minimize reflection loss 

(RL) (or to maximize the absolute value of RL) with maximum bandwidth 

corresponding to the band where RL is smaller than -10 dB. Moreover, the effects of 

parameters such as polypyrrole content, structure thickness, complex features of the 

material, and frequency were investigated. As a result, it is reported that -62.6 dB of 

RL and 7.7 GHz of bandwidth are achieved for the relevant structure. 

In the study by Toktas et al., a multi-objective problem, including surrogate modeling, 

was defined to design a multi-layer radar absorber by considering each layer’s material 

type and thickness [67]. The outputs were determined to minimize the total reflection 

and all structure thickness. Furthermore, the absorber was designed through multiple 

radar bandwidths (0.2-2, 2-8, 8-12, 12-18, and 2-18 GHz). The obtained optimum 

design was reported for each bandwidth in order as the total reflection and thickness 

values of -27.83 dB and 3.38 mm, -22.31 dB and 2.13 mm, -25.24 dB and 1.11 mm, -

25.47 dB and 1.0426 mm, and -18.88 dB and 2.69 mm. 

On the other hand, inadequate approaches are encountered when the relevant methods 

preferred in literature studies are examined. Firstly, current data modeling approaches 

are based on considering one or two different regression model types with the accuracy 

step by checking R2 values only. Nevertheless, achieving a high R2 value is unsuitable 

for complex engineering problems. Therefore, different regression model forms must 

be considered to define the relevant phenomenon realistically. Another shortcoming is 

that the current methods cannot provide a boundedness check for the candidate models. 

However, whether the candidate models are limited to the parameter intervals of the 

considered phenomenon should be checked. To overcome these problems, in previous 

studies, a comprehensive mathematical approach has been reported to enable reliable 

predictions by using the neuro-regression analysis, a systematic combination of RA 

and ANN methods [68-72]. 
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1.2 Motivation 

CVD-based GF has a high potential to be used as EMI shielding material since it 

provides a large surfaced 3D network of high-quality graphene. Moreover, it is an ideal 

candidate to be used as a template in the hydrothermal method to synthesize MnO2 

nanostructures for various applications. However, there is a very limited study 

concerning the hydrothermal process parameters’ effect on the EMI shielding 

effectiveness through the characteristics of the MnO2 nanostructure on the CVD-based 

GF. Therefore, it would be very insightful to understand the interaction of the 

structural forms of MnO2 nanomaterials growth on the GF with hydrothermal process 

parameters in order to achieve the most effective properties for the EMI shielding. 

For the above-stated reasons, this thesis study intends to conduct a design-based 

optimization procedure considering the nanocomposite structure of GF/MnO2 NW as 

EMI shielding material. In line with this purpose, hydrothermal process parameters’ 

effects on the nanocomposite material’s EM wave absorption and reflection 

effectiveness characteristics are examined. First, the mathematical optimization 

problem is defined considering design variables (time, temperature, KMnO4/HCl 

molar ratio) and objective functions (SER and SEA of material). Then, the obtained 

data is modeled by a multiple nonlinear neuro-regression approach to achieve robust 

objective functions for the optimization problem. In this step, several regression model 

types (linear, trigonometric, polynomial, logarithmic, exponential, and their rational 

and hybrid forms) are considered to attain an objective function that defines the 

phenomenon accurately and realistically. Accordingly, four-distinct direct search 

optimization algorithms (Simulated Annealing, Nelder-Mead, Differential Evolution, 

Random Search), which have a different fundamental basis from each other, were 

performed simultaneously to offer an optimum design. Figure 1.1 represents the 

general procedure steps of this thesis study schematically. 
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Figure 1.1: Schematic representation of this thesis study. 

 

Furthermore, in the literature, there have been numerous recent studies on the materials 

informatics field implementing data-driven approaches to design and develop 

materials with minimum time and costs. However, as mentioned before, the current 

methods have some deficiencies, and more effort is needed to develop a systematic 

perspective to predict the relevant properties of materials during the design process. 

Therefore, the motivation of this thesis is based on presenting a systematic approach 

for materials modeling and optimization through statistical and mathematical basis by 

considering graphene-based nanocomposite as a case study. This method would allow 

the materials used in the relevant fields to be designed and optimized to have desired 

performance. Furthermore, the proposed method has a high potential to meet the 

fundamentals of materials science within the scope of processing-structure-properties-

performance relationships. In this respect, it is practicable for not only the EMI 

shielding materials but also the modeling-design-optimization processes of any 

materials science-concerned subject.  
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Chapter 2 

Mathematical Background 

In this chapter, it is introduced the background of mathematical instruments used 

throughout the thesis. The main goal of this chapter is to briefly explain the processes 

for design-based optimization in engineering through the methods used in this study. 

In this regard, the design of experiments, mathematical modeling, and optimization 

processes are presented. Figure 2.1 displays all these steps for an optimal design 

process. Furthermore, optimization processes in Mathematica software, which is the 

tool utilized to perform mathematical procedures in this study, are mentioned. 

 

 

Figure 2.1: Flow diagram showing the steps of an optimal design process. 

 

2.1 Design of Experiments (DoE) 

In manufacturing processes, experiments are conducted to increase our knowledge and 

understanding of them. Hence, the correlations between the main factors of the inputs 

and the output behaviors can be observed [73, 74]. One of the most popular strategies 

in engineering is One-Variable-At-a-Time (OVAT). In this method, one parameter is 



10 

 

changed at a time, with all others kept constant in all experiments. However, this 

method may give a misleading conclusion to processes, making the results unreliable 

and wasteful. Furthermore, it is known that not all parameters have an equal effect on 

the outcomes. Hence, an elaborate design aims to identify the effect level of process 

parameters on the output [73, 75, 76]. If multiple factors influence a given 

characteristic of a component, then the best option is design of experiments (DoE) [73, 

74, 77]. DoE is a useful technique for discovering new processes, gaining a deep 

insight into existing processes, and optimizing their performance. This method ensures 

high efficiency and more consistent process results by saving time and cost. 

It is vital to decide on the most appropriate statistical tools to analyze data since the 

results can be affected by noise to a considerable extent. Replication, randomization, 

and blocking are the core principles of statistical approaches in DoE. Replication is 

based on repeating experimental runs to attain more precise results and decrease 

experimental error. Randomization process designates a random order for the 

experiments to be performed. The purpose of blocking is to isolate a known systematic 

bias impact and to prevent the major effects from vagueness [73, 75]. The 

determination of the proper DoE method depends on the objectives of experiments and 

the number of factors to be addressed. The remaining part of this section presents a list 

and brief explanation of some DoE methods, which are Randomized Complete Block 

Design, Full Factorial, Fractional Factorial, Central Composite, Box-Behnken, 

Taguchi, Latin Hypercube, and D-Optimal Design [75]. It should be noted that the 

techniques presented here do not comprise a complete list since it is aimed to acquaint 

the readers with the topic by presenting the approaches widely used in practice.  

2.1.1 Randomized Complete Block Design 

There is no strict limitation on the distribution of treatment for experimental 

constituents. However, there are practical situations in which the data obtained from 

experiments varies considerably. In such cases, the design made in relation is referred 

to as a Randomized Complete Block Design (RCBD). The chief purpose of blocking 

is the minimization of variability between experimental units within a block and the 

maximization of variation between blocks. 
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Advantages 

• Removing the treatments or replicates from the analysis is possible. 

• Some multiple treatments can be more often replicated than others. 

• The number of treatments or replicates is not strictly restricted. 

• There can be valid comparisons, although the experimental error is not 

homogeneous [73, 78]. 

Disadvantages 

• A smaller error on df exists for a small number of treatments. 

• It is possible to acquire a substantial error term if there are too many treatments 

and considerable variations between experimental units. 

RCBD is not good at experimental efficiency when data deficiency exists. 

2.1.2 Full Factorial Design 

Factorial designs at two or three levels are generally recognized as the most often 

employed DoE method in manufacturing industries and can enable obtaining 

consistent results on the effect of the variables. Factorial designs can be divided into 

as full and fractional factorials. Full factorial design is an approach that identifies the 

experimental runs by combining each factor setting with every other one. If the 

concerned response is affected by five or more factors, full factorial design needs a 

substantial number of runs and is not very useful. In such circumstances, the fractional 

factorial design can be preferable [73, 74]. 

2.1.3 Fractional Factorial Design  

In practice, time and funding are mostly insufficient to carry out experiments via full 

factorial design. However, in case of some higher-order correlations are not 

indispensable, the main influences and two-order interactions can be obtained by 

utilizing a fraction of the full factorial experiment to decrease the time and cost of the 

experiments. Fractional factorial design is a type of orthogonal array layout that allows 
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researchers to investigate the most important and necessary impacts of relationships 

with a minimum number of workouts or experimental runs [73, 74, 78, 79]. 

2.1.4 Central Composite Design 

Central composite design (CCD), which generates a factorial design, is one of the most 

common response surface designs and is conducted with five factorial levels. Checking 

the corner points is one of the most important advantages of CCD. Accordingly, if the 

curvature is inconsiderable, then it is accomplished. On the other hand, the main task 

is to create the star runs if the curvature is significant [77].  

2.1.5 Box-Behnken Design 

Box-Behnken design is a popular DoE technique compatible with using three factorial 

levels. This approach is based on the midpoints instead of the cube edge corner points, 

resulting in fewer runs. However, apart from CCD, all runs must also be done in Box-

Behnken. Furthermore, it is superior in which cases the curvature specified in the 

screening experiment is likely necessary [73]. 

2.1.6 Taguchi Design 

Taguchi design is a statistical method which helps to enhance engineering efficiency 

significantly. The main goal of the Taguchi method is to maintain the output 

fluctuation at the minimum even in the noise existence. Therefore, this approach helps 

to ensure product quality by considering the noise factors and the error amount. 

Furthermore, Taguchi design focuses on improving the primary function of the design 

process, and thereby flexible designs can be presented [73, 78]. 

Advantages 

• It is easily adaptable to various engineering problems, which enables it to be 

a robust tool. 

• It improves the product quality, within some qualification constraints, by 

considering a mean production feature value comparable to the final one 

rather than just a value. 
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• It enables to examine the several variables without an impractically large 

number of runs. 

Disadvantages 

• Obtained results are comparative and do not determine which parameter has 

the most significant effect on the desired feature accurately. 

• It cannot be used to figure out interactions of all variables because orthogonal 

arrays only analyze some parameter combinations. 

• Parameter interactions are hard to be considered. 

It is offline, so that inconvenient for procedures having dynamic changes as in 

computer simulations.  

2.1.7 Latin Hypercube Design 

This approach is a method which creates a near-random sample of parameter values 

from Multidimensional Distribution. Furthermore, Latin Hypercube design is a 

generalization of the Latin Square concept to an arbitrary number of dimensions. In 

this method, the first step is to determine how many sample points are to be addressed 

and along which row and column the sample point was utilized for each. Besides, this 

approach ensures a set of random numbers representing the actual fluctuation, while 

standard random sampling is only a set of random numbers without assurance [73-75]. 

2.1.8 Optimal Design (D-Optimal) 

D-Optimal is a computer-aided design containing the best part of entire possible 

experiments. The final design may differ depending on the tool employed so software 

tools may possess different processes to create D-Optimal designs [73, 79]. Selection 

method generates the best design based on a predetermined factor and the number of 

runs. D-Optimal design approach is very useful in which cases that traditional design 

methods are not used. These cases are: 

• When supplies of factor configurations are restrained. 

• If the number of experimental runs must be reduced. 



14 

 

• When using the operation and mixing variables in the same design. 

• When previously performed experiments must be comprised. 

• If the experimental region is unstable [73, 76, 77]. 

2.2 Mathematical Modeling 

Mathematical modeling plays a key role in design-based engineering optimization 

studies to obtain a robust objective function for the problem. Therefore, selecting an 

appropriate data modeling methodology is important to define the considered 

phenomenon accurately. In this manner, researchers employ various modeling 

methodologies such as Regression Analysis, Response Surface Methodology (RSM), 

Finite Difference Technique (FDT), and Artificial Neural Networks (ANN). 

Nevertheless, studies preferred popular methods regarding engineering optimization 

have some inadequate approaches, as follows: 

(i) It is not a satisfying description of updating one input while maintaining the others 

constant because this approach causes to neglect the nonlinear impact of input 

variables. So, it is necessary to consider the interactions between all experimental 

and constructional parameters in terms of optimization perspective. 

(ii) Most data modeling methods include utilizing one or two traditional regression 

models as an objective function for the problem. Accordingly, the model’s 

reliability is checked by calculating R2 values, which indicate the proximity of the 

fitted model results to the experimental data. However, achieving a high R2 value 

does not always mean a good fit for the engineering systems. Furthermore, since 

the model describes only the experimental data rather than the fundamental 

behavior of the phenomenon, different regression model types and approaches 

should be considered. 

(iii)Another critical point is to consider the boundedness of the model function. All the 

engineering parameters are known as finite, so the function should be bounded to 

model the engineering systems realistically. Hence, the proposed model should be 

checked to determine whether it is limited to the parameter intervals of the 

respective phenomenon. 
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(iv) Although it is vital to unveil the inherent behaviors of the stochastic search 

processes, some studies on engineering systems optimization do not consider the 

reliability, sensitivity, and robustness of the algorithms. 

In order to overcome the abovementioned deficiencies of the most widely used 

modeling and optimization approaches, it has been stated in the literature that it is 

possible to perform realistic engineering design optimization studies [68, 70]. 

Therefore, with the optimization process including the simultaneous use of four 

distinct direct search algorithms, a multiple nonlinear neuro-regression analysis is 

introduced to present a comprehensive aspect of the modeling-design-optimization 

processes.  

2.2.1 Neuro-Regression Approach  

Neuro-regression approach is a hybrid data modeling technique that draws on the 

advantages of regression analysis and Artificial Neural Network (ANN) to enhance 

prediction accuracy. At the beginning of this approach, all data is split randomly into 

two sets of 80% and 20% to be used as training and testing, respectively. The goal of 

the training step is to minimize the error between the experimental and predicted 

values by specifying the regression models and their coefficients. Accordingly, testing 

data are used to obtain the estimated results by minimizing the effects of regression 

model inconsistencies, and this step gives an understanding of the candidate models’ 

prediction capability. R2 values of the models are achieved in the training and testing 

steps. As a final phase of the approach, appropriate models in terms of R2 values are 

subjected to a boundedness check. In this regard, the boundary of the candidate models 

is determined as the minimum and maximum values in the given interval for each 

design variable. This step is crucial to confirm whether the models are meaningful 

regarding the considered problem. As a result, chosen models are expected to meet 

each criterion required for robustness. 

2.2.2 Nonlinear Regression Analysis 

Models which are not linear in their parameter are known as nonlinear regression 

models. They can be utilized for three distinct purposes [80]: 
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• To test the validity of the model (or compare the hypothesis), 

• To characterize the model (i.e., prediction of parameters), 

• To estimate the behavior of the system (interpolation and calibration). 

The nonlinear regression model can be written in general form as follows: 

 𝑦 = 𝑓(𝑥, 𝛽) + 𝜀 (2.1) 

where x, β, and ε are vector of p predictors, a vector of k parameters, and an error term, 

respectively. f(-) represents a known regression function. 

For nonlinear regression, mathematical modeling processes can be conducted 

systematically considering the main properties as follows: 

• Since the function does not need to be linear or linearizable, nonlinear 

regression offers more flexibility than linear regression. Hence, the nonlinear 

regression ensures a variety of choices to match the data. 

• In cases where the f function can be linearized, nonlinear regression may be 

more applicable than transformations and linear regression. 

• Nonlinear regression necessitates a knowledge of the f function (e.g., 

polynomial, trigonometric, exponential), which requires a comprehensive 

insight into the studied process. However, linear regression models are 

appropriate for process forecasts in which the relationship between input and 

output parameters is roughly certain, but precise clarity is not required. 

Functionally generalized states cannot be written because nonlinear regression models 

involve the most general mathematical terms. However, some fundamental model 

types utilized in engineering fields are given as examples of nonlinear equations as 

follows: 

 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 (2.2) 

 𝑦 = 𝑎0 + 𝑎1𝑒𝑥 + 𝑎2𝑒𝑥2
+ ⋯ + 𝑎𝑛𝑒𝑥𝑛

 (2.3) 
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 𝑦 = 𝑎0 + 𝑎1 sin 𝑥 + 𝑎2 sin 𝑥2 + ⋯ + 𝑎𝑛 sin 𝑥𝑛 (2.4) 

 𝑦 =
𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛

𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛
 (2.5) 

Furthermore, multivariable states having multiple inputs of the abovementioned model 

types can be constructed with a similar approach. Another pertinent point is that special 

functions (e.g., Bessel, Laguerre, Lambert, Gamma), as well as different combinations 

of traditional functions, can be chosen with a deeper understanding of mathematical 

functions. 

2.3 Optimization 

In engineering, optimization can be defined as obtaining an optimum design by 

maximizing or minimizing predetermined objective(s) to meet the considered problem 

requirements. The objective of an engineering problem can be expressed as a function 

dependent on design variables. Furthermore, optimization problems are defined as 

single- or multi-objective approaches. Single-objective optimization problems, 

including an objective function, design variables, and constraints, can be 

mathematically expressed as follows: 

minimize/maximize 𝑓(𝜃1, 𝜃2, … , 𝜃𝑛) 

constraints   𝑔𝑖(𝜃1, 𝜃2, … , 𝜃𝑛) ≤ 0  𝑖 = 1, 2, … , 𝑚 

    ℎ𝑗(𝜃1, 𝜃2, … , 𝜃𝑛) = 0  𝑗 = 1, 2, … , 𝑝 

    𝜃𝐿 ≤ 𝜃1, 𝜃2, … , 𝜃𝑛 ≤ 𝜃𝑈 

where f is an objective function dependent on the design variables which are θ1, θ2, …, 

θn, and both g and h represent the constraints of the problem. θL and θU indicates the 

lower and upper bounds of design variables. 

On the other hand, modern engineering design and optimization problems often need 

to deal with conflicting multiple objectives to be minimized and/or maximized [81]. 

Therefore, multi-objective optimization approaches are used in these cases, and Pareto 
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optimal solution sets are obtained. However, in a multi-objective optimization 

approach, it is not possible to find an optimum solution for all objectives; hence, only 

one solution from the solution set is chosen for engineering applications in practice 

[82, 83]. A multi-objective optimization problem can be mathematically expressed as 

follows: 

minimize/maximize 𝑓1(𝜃1, 𝜃2, … , 𝜃𝑛), 𝑓2(𝜃1, 𝜃2, … , 𝜃𝑛), … , 𝑓𝑡(𝜃1, 𝜃2, … , 𝜃𝑛) 

constraints   𝑔𝑖(𝜃1, 𝜃2, … , 𝜃𝑛) ≤ 0  𝑖 = 1, 2, … , 𝑚 

    ℎ𝑗(𝜃1, 𝜃2, … , 𝜃𝑛) = 0  𝑗 = 1, 2, … , 𝑝 

    𝜃𝐿 ≤ 𝜃1, 𝜃2, … , 𝜃𝑛 ≤ 𝜃𝑈 

where f1, f2, …, ft indicate objective functions of the relevant optimization problem 

[84]. In addition, penalty function formulation rather than the classical multi-objective 

optimization approach may be more suitable in some cases to benefit from its 

advantage of converting constrained problems into unconstrained ones [82]. 

Furthermore, optimization algorithms are mainly divided into traditional 

(deterministic) and non-traditional (stochastic) methods. Traditional optimization 

approaches, such as Lagrange multipliers, are analytical methods [70, 81]. Therefore, 

they give optimum solutions based on exact input values for only continuous and 

differentiable functions. However, one of the most prevalent issues in applied 

mathematics is finding an optimal solution approximately for a function defined on a 

subset of finite-dimensional space. Combinatorial optimization problems, essential for 

most machine learning approaches, have objective functions to be optimized to attain 

an optimal solution approximation. With the advance of computer technology, 

stochastic optimization approaches have come to the forefront in several areas, such 

as engineering, science, and statistics, as solid tools to meet the requirements of 

modern optimization problems. Stochastic optimization is a process grounded on 

minimizing or maximizing a statistical or mathematical function when multiple input 

parameters depend on random variables. The randomness can be either Monte Carlo 

randomness or noise in measurements in the search procedure or both [84-86]. Unlike 

traditional methods, stochastic optimization algorithms ensure approximate rather than 

exact solutions. Additionally, because stochastic optimization techniques include 
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probability, their simultaneous utilization in a problem increases the reliability of 

results. 

The following subsections include a brief overview of Simulated Annealing (SA), 

Differential Evolution (DE), Nelder-Mead (NM), and Random Search (RS), which are 

optimization algorithms used in this study. 

2.3.1 Simulated Annealing 

Simulated Annealing (SA) algorithm is one of the most effective stochastic 

optimization methods and is based on an analogy of the annealing process. An 

annealing process can be defined as increasing a solid's temperature to a certain level 

and then decreasing it to obtain a low-energy state of a solid. At the maximum 

temperature, all crystal molecules are shifted randomly into a liquid phase. Then, the 

melted crystal is cooled to a certain level (e.g., room temperature). A crystal structure 

with optimum stability is achieved when the cooling process is appropriately 

conducted. Otherwise, defects and instabilities in the structure occur if the cooling 

process is carried out rapidly. In the optimization perspective, the solid's states 

correspond to probable solutions of optimization problems, while the energy states of 

the solid represent objective function values of solutions [87]. 

SA algorithm is inspired by achieving a low-energy state of a solid in the analogy and 

is quite useful to obtain the global optimum of a function. This method can ensure the 

global optimum with a substantial number of independent variables. Furthermore, this 

algorithm is utilized to find the minimum value of a function in mixed-integer, 

discrete, or continuous optimization problems. SA method is based on using a random 

search regarding Markov Chain, which keeps some non-ideal changes in addition to 

accepting changes that develop the objective function. Figure 2.2 shows a flowchart 

representing the steps of the SA algorithm. In this process, a new point is created 

randomly, and the algorithm ends when any stopping criteria are met. The distance 

between the new and current point is based on Boltzmann Probability Distribution with 

a scale proportionally to the temperature. Boltzmann Probability Distribution can be 

defined as follows [85, 88-90]: 
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 𝑃(𝐸) = 𝑒−𝐸/𝑘𝑇 (2.6) 

where k, T, and P(E) denote Boltzmann constant, temperature, and the probability of 

achieving the energy level (E), respectively. 

 

 

Figure 2.2: SA Algorithm’s Flowchart [88]. 

2.3.2 Differential Evolution 

Differential Evolution (DE) is one of the most efficient real-parameter optimization 

algorithms for problems in continuous domains [91]. The DE algorithm consists of 

four main steps: selection, crossover, mutation, and initialization. Furthermore, this 

algorithm has three real control parameters: differentiation/mutation constant, 

crossover constant, and population size. The DE technique’s performance depends on 

the target and difference vector manipulation to attain a trial vector. Other control 

parameters of this algorithm are: i) problem dimension that scales the case difficulty, 

ii) boundary constraints, and iii) the maximum number of generations known as a 
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stopping condition [85, 90]. Figure 2.3 shows a flowchart of the process of this 

algorithm. 

 

 

Figure 2.3: DE Algorithm’s Flowchart 

 

Besides, the DE method is a population-based algorithm based on the mutation 

operation as a primary search mechanism. This operation relies on the differences 

between randomly sampled pairs of solutions. Although the DE algorithm is 

numerically uneconomical, it is powerful enough to achieve a global optimum and to 

maintain the local minimum regardless of initial points [92-94]. 

2.3.3 Nelder-Mead 

Nelder-Mead (NM) is a simplex search algorithm designed for unconstrained 

optimization problems by Nelder and Mead at first [95]. NM is a traditional local 

search rather than a global optimization algorithm; however, it works quite well for 

optimization problems with few local minima in practical applications. The NM 

algorithm possesses four main control option procedures: reflection, expansion, 
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contraction, and shrinkage. Furthermore, the NM algorithm often gives significant 

enhancements in the first few iterations characteristically and creates good results 

quickly. Additionally, this algorithm typically requires only one or two function 

evaluations per iteration, except for shrink transformations, which are highly unusual 

in practice. Therefore, this feature makes the NM algorithm significant in such cases 

that each function evaluation is expensive or time-wasting. The NM algorithm has high 

flexibility to discover difficult domains since the simplex can alter its shape, 

orientation, and size to adjust to the objective function's local contour [96]. Figure 2.4 

displays a flowchart showing the steps of the NM algorithm process. 

 

 

Figure 2.4: NM Algorithm’s Flowchart 
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2.3.4 Random Search 

Random Search (RS) is a stochastic algorithm which may also be known as the Monte 

Carlo method. Since the RS algorithm is based on randomness or probability to provide 

asymptotic convergence, it completely differs from deterministic optimization 

techniques such as interval analysis, tunnelling methods, and branch and bound [97-

99]. Within the stochastic process, a set of methods and programs based on a pseudo-

number creator are available. Obtained values should be scaled and converted to 

approach any desired distribution. Moreover, the RS technique is frequently preferred 

because it ensures the solution quickly and easily, which is an important feature of 

computational effort. One of the most prominent advantages of the RS algorithm is 

that it is useful for complex optimization problems in cases being nonconvex, 

nondifferentiable, and discontinuous over a continuous, discrete, or continuous-

discrete domain. Therefore, the RS algorithm is known as robust in terms of achieving 

beneficial information quickly for complex problems [82, 100]. Figure 2.5 represents 

the flowchart of the RS algorithm followed through the thesis. 

 

 

Figure 2.5: RS Algorithm’s Flowchart 

 



24 

 

2.4 Mathematica and Optimization 

Wolfram Mathematica is a solid technical computing software allowing to study of 

various fields, such as data science, machine learning, symbolic computation, and 

optimization. It has commands group work for exact-numeric optimization to solve 

linear-nonlinear and constrained-unconstrained problems [101]. In this regard, 

commands, Minimize and Maximize are used only in exact global optimization, while 

NMinimize and NMaximize commands are proper for numeric global optimization. 

Additionally, the FindMinimum command is utilized to conduct numeric local 

optimization. Table 2.1 and Figure 2.6 present in detail which commands and 

algorithms are used for what kind of problem. 

 

Table 2.1: Optimization types, algorithms, and relevant commands [102]. 

Types Algorithms 
Mathematica 

Commands 

Numerical Local 

Optimization 

- Linear Programming Methods (LPM) 

- Nonlinear Interior Point Algorithms 

FindMinimum 

FindMaximum 

Numerical Global 

Optimization 

- LPM 

- SA 

- DE 

- NM 

- RS 

NMinimize 

NMaximize 

Exact Global 

Optimization 

- LPM 

- Cylindrical Algebraic Decomposition 

- Lagrange Multipliers 

- Integer Linear Programming 

Minimize 

Maximize 

Linear Optimization 

- Linear Programming Methods 

(simplex, revised simplex, interior 

point) 

Linear Programming 
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Figure 2.6: Optimization procedure in Mathematica Software [101]. 

 

2.4.1 Random Search 

The RS algorithm embedded in Mathematica consists of population involving random 

starting points. Accordingly, the starting points’ convergence behavior to the local 

minimum is evaluated using the FindMinimum local search method. The following 

options occur during the process:  

(i) The starting points number as per the “min(10 f,100)” expression is determined 

by SearchPoints (where f denotes the variable number),  

(ii) The starting value for the random number generator is arranged by RandomSeed,  

(iii) Method is used to identify by which method to be employed for minimizing the 

objective function by FindMinimum. The FindMinimum command employs the Quasi-

Newton as a search approach for unconstrained problems, which does not need the 

computation of the second derivatives (Hessian matrix); rather, the Hessian is updated 

by examining successive gradient vectors. In the constrained problem case, the 

FindMinimum command uses the non-linear interior point as the search method, 

(iv) PostProcess option can be chosen as Karush-Kuhn-Tucker (KKT) conditions or 

FindMinimum. Finally, the best local minimum is determined as the solution. 
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In the RS algorithm, the options InitialPoints, Method, PenaltyFunction, PostProcess, 

and SearchPoints are controlled automatically by Mathematica, and proper values are 

chosen according to the optimization problems [101]. 

Separable and non-separable multimodal test functions having multiple local minima 

are used to evaluate the performance capacity of the RS algorithm in achieving the 

global optimum. In case of an algorithm is not designed properly, this kind of global 

optimization problem becomes quite hard. So, it can be inserted into local minima 

without finding the global minima, or not all global minima can be found. In this 

regard, the first chosen test function is Ackley which has global minima at 𝑓(0,0) = 0 

[102]. The Mathematica syntax for the definition of Ackley function with its 3D plot 

in an interval is given as follows: 

 

Out[2]= 

 

 

It should be noted that the RandomSearch command may fail to identify a global 

minimum if its options are not changed. 
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Sometimes altering the search point option, which defines the point number to start 

searches, can be an effective move in achieving a global minimum. 

 

The RandomSeed option effect is examined below. In the previous example, the 

“SearchPoints−>500” is insufficient to reach the global optimum. Therefore, in the 

following case, a global minimum can be attained by adjusting the values of the 

RandomSeed and SearchPoints to 5 and 500, respectively. 

 

Herein, points are generated on a grid to use as initial points. If the problem’s 

approximate solution range can be predicted, the solution is achieved more easily when 

designating a starting point. 

 

Since the PostProcess methods (KKT option) and FindMinimum give the same results, 

the PostProcess option does not have primary importance for this problem. 
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Another test function, “Holder Table 1”, which is separable and multimodal, is used 

to assess the RandomSearch command’s capability in obtaining the global minimum 

[102]. The test function has global optima at 𝑓(±9.646168, ±9.6461680) =

−26.920336. The definition of “Holder Table 1” function and its 3D plot is performed 

in Mathematica syntax as follows: 

 

Out[2]= 

 

 

The RS algorithm attains one of the global minimum points without changing its 

options for this problem. 
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2.4.2 Simulated Annealing 

In the Simulated Annealing algorithm embedded in Mathematica software, the 

working process involves that the startup solution, “Z”, which is generated first. Then, 

“Znew” is produced in the in the neighborhood of the “Z” point, and then “Zbest” is 

identified. If 𝑓(𝑍𝑛𝑒𝑤) ≤ 𝑓(𝑍𝑏𝑒𝑠𝑡), Znew substitutes Zbest and Z. Otherwise, it replaces 

with Z. InitialPoints, SearchPoints, and RandomSeed options in this loop can 

determine the initial guess, its number, and starting value, respectively. 

In the SA algorithm, random movements in the search space based on the Boltzmann 

probability distribution, 𝑒𝐷(𝑘,∆𝑓,𝑓0), where D, k, and Δf denotes the function defined by 

BoltzmannExponent, current iteration, and change in the objective function, 

respectively. Mathematica software defines D automatically as 
∆𝑓 log (𝑘+1)

10
 by 

BoltzmannExponent. 

For all starting points, the SA algorithm process is returned by the time either the 

algorithm converges to a point or remains at the same point due to the iteration number 

appointed by the LevelIterations [103]. 

“Ackley” and “Holder Table 1” functions are utilized to assess the 

SimulatedAnnealing command’s performance in achieving the global minimum. 
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Out[2]= 

 

 

The SA algorithm may not obtain a global minimum by using the default options. 

 

The BoltzmannExponent is a substantial command that presents the way to attain a 

global minimum since it involves a function that determines a new point at iteration. 

The found result can be altered if this function is used without a default value. In the 

following case, however, altering this option alone has not been sufficient to obtain 

the global minimum. 

 

Furthermore, even though the PerturbationScale changes the result, altering this 

option alone has still not been enough to attain the global minimum. 
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A global minimum can be obtained by using much more SearchPoints. 

 

As seen before, although altering the search points alone is adequate to achieve the 

global optimum, the algorithm obtains the local minima in the case of performing a 

search utilizing the PerturbationScale, RandomSeed, and BoltzmannExponent. 
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Out[10]= 

 

 

For this problem, the SA algorithm attains one of the global minimum points without 

changing of its options. 

 

Unlike the RS, four different global minimum points can be achieved by utilizing the 

SA algorithm. 
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2.4.3 Differential Evolution 

The Differential Evolution algorithm embedded in Mathematica software generates a 

new population of k points in iterations. Then, the jth new point is generated 

considering three random points (e.g., z1, z2, and z3) from the population created 

before. After that, a new formation by 𝑧𝑠 = 𝑧3 + 𝑠(𝑧1 − 𝑧2) is built where s denotes 

the real scaling factor. A new point, znew, is created from zj and zs by selecting the ith 

coordinate or another coordinate of jth from zs with the probability of p. Then, znew 

substitutes by zj if ℎ(𝑧𝑛𝑒𝑤) < ℎ(𝑧𝑗) [101].  

The DifferentialEvolution command involves specific arrangement options, 

CrossProbability (P), InitialPoints, PenaltyFunction, PostProcess, RandomSeed, 

ScalingFactor, SearchPoints, and Tolerance, even if none of them guarantees to 

achieve global optima. The DE algorithm process in Mathematica software is 

illustrated in Figure 2.7 [104]. 

 

 

Figure 2.7: The DE algorithm flowchart [104]. 

 

To examine the DE algorithm performance, the same test functions are utilized as they 

were in previous algorithms. 
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Better results are obtained considering the global optima when the default value of 

ScalingFactor is set from 0.6 to 0.7. 

 

However, better global optima were not produced by changing ScalingFactor, 

RandomSeed, CrossProbability, or SearchPoints. So, the relevant solvers were kept as 

default. 

Moreover, the global minima of Holder Table 1 were tried to attain by the SA 

algorithm. The initial steps are same with algorithms used before. 

 

In this case, any parameters different from their default values attain neither different 

results nor better global minima. 

2.4.4 Nelder-Mead 

As other algorithms, the NM algorithm embedded in the Mathematica has certain 

options allowing flexibility: ContractRatio, ExpandRatio, InitialPoints, 

PenaltyFunction, PostProcess, RandomSeed, ReflectRatio, ShrinkRatio, and 

Tolerance. The NM algorithm is capable of working well for the problem with less 

local minima, although it does not ensure the full specifications that a precise global 

optimization approach should have. As done for other algorithms, the NM algorithm 

is utilized to achieve the global optimum for Ackley and Holder Table 1 [101]. 
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As can be seen, the first trial outcomes by DE are outperformed, while NM obtains 

better global optima than RS and SA for Ackley test functions in default mode. 

A critical adjustment parameter of the NM algorithm, RandomSeed, may influence the 

performance directly to obtain global minima. 

 

Compared with the trial carried out in the default setting, the RandomSeed arrangement 

ensured a better value. 

Other helpful options in the NM for adjusting to obtain better results are ShrinkRatio, 

ContractRatio, and ReflectRatio. Nevertheless, global minima could not be achieved 

in the following case for the Ackley test function. 

 

Holder Table 1 function was minimized via command NMinimize in default mode as 

follows: 
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As used previously, the first adjustment has been made by the RandomSeed to obtain 

global value. 

 

The results show that the RandomSeed was not sufficient to reach minimum value. 

Therefore, other possible parameters useful to attain global value for the NelderMead 

were utilized. 

 

In the relevant case, the adjustment parameters could not ensure a global minimum 

differing from the obtained values by the default mode. 

2.4.5 NMaximize & NMinimize 

In Mathematica, NMaximize and NMinimize commands provide users to optimize 

complex engineering and science problems with their specific characteristics utilizing 

search algorithms. However, even without constraints and boundary conditions, 

finding optimum results might be difficult even though NMaximize and NMinimize 

methods are solid to find the global optimum. This kind of case can be overcome by 

optimizing the given functions with distinct initial conditions. The commands are 
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evaluated using the test functions, Ackley and Holder Table 1, as functions of 

𝑓(𝑥1, 𝑥2) and 𝑔(𝑥3, 𝑥4), respectively. 

 

It can be seen that the global minima and maxima of the Ackley function could be 

achieved, while they could not be for Holder Table 1 function. Therefore, parameter 

adjustment or altering the restriction region may be effective in finding global values. 

Furthermore, constraints can be defined either in the list form or rational combination 

of domain options, inequalities, and equalities. For instance, if results require to be 

obtained in the integer domain, the unknown parameter z should be indicated as z ∈ 

Integers in line to restrict the solutions as only integers. Moreover, to begin the 

optimization process, the NMinimize command entails a rectangular starting region 

which means that all variables of a given function should have a finite upper and lower 

boundary. Additionally, the Method option allows the user to perform other search 

algorithms types, ensuring a non-automatic solution set as used before in the SA and 

RS algorithms. Herein, if an objective function and constraints are linear, the default 

setting is LinearProgramming in the solving process. If the objective function’s central 

part is not numerical, and the variables are integer, the DE is the default algorithm. 

Otherwise, the NM is the search algorithm. However, it can be altered with DE to 

attain optimum values when the NM provides undesirable solutions [101]. 
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Chapter 3 

Preliminary Studies 

This section aims to demonstrate the applicability of the methodology utilized 

throughout this thesis in different materials science subjects. Therefore, prestudies 

worked and published within the scope of this thesis are presented briefly [72, 105]. 

3.1 Stochastic Optimization of TiO2-Graphene 

Nanocomposite by Using Neuro-Regression 

Approach for Maximum Photocatalytic Degradation 

Rate 

Improvement in photocatalytic activity to design photocatalysts is crucial for 

applications such as water treatment and air purification. TiO2 nanomaterials and its 

hybrid form with graphene have come to the fore recently to achieve the desired 

performance of photocatalysts.  

This study intends to offer an optimum design to synthesize graphene oxide/TiO2 

(GO/TiO2) nanocomposite. Parameters of defined optimization problems include 

process parameters (EtOH/water ratio, hydrothermal reaction time, and GO content) 

as design variables (input) and the 2-hydroxyterephthalic acid (HTPA) formation rate 

as an objective function (output). Dataset was obtained from a literature study [106] 

and data modeling process were modeled by multiple nonlinear neuro-regression 

approach. In addition, four different optimization algorithms (DE, RS, SA, NM) were 

utilized in the optimization stage. Problem definition of this study is as follows [105]: 
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where v, g, and t denote EtOH/water ratio, GO content, and reaction time, respectively. 

K represents the objective function, HTPA formation rate. 

Data modeling process were performed by starting to separate dataset into 75% and 

25% for training and testing, respectively. Training data were used to build a model 

via the multiple nonlinear neuro-regression approach. Accordingly, all testing data 

were used to test the obtained data. Table 3.1 shows dataset used in this study [106]. 
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Table 3.1: Dataset used through the study [106]. 

 

Run 

EtOH/Water 

(v/v%) 

v 

GO Content 

(wt.%) 

g 

Reaction 

Time (h) 

t 

Rate (min-1) 

K 

Training 1 55.00 0.06 12.00 0.27 

2 55.00 0.65 24.00 0.40 

3 105.00 0.65 12.00 0.20 

4 4.55 0.65 12.00 0.22 

5 55.00 1.24 12.00 0.25 

6 55.00 0.65 0.23 0.21 

7 85.00 0.30 5.00 0.27 

8 25.00 0.30 5.00 0.23 

9 55.00 0.65 12.00 0.32 

10 55.00 0.65 12.00 0.29 

11 55.00 0.65 12.00 0.31 

12 55.00 0.65 12.00 0.30 

13 85.00 1.00 19.00 0.28 

14 55.00 0.65 12.00 0.32 

15 25.00 1.00 19.00 0.32 

Testing 16 25.00 1.00 5.00 0.23 

17 85.00 0.30 19.00 0.33 

18 55.00 0.65 12.00 0.29 

19 85.00 1.00 5.00 0.18 

20 25.00 0.30 19.00 0.35 

 

The obtained model by the proposed approach to define a function of HTPA formation 

rate (K) depending on the design variables is given as follows: 
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(3.1) 

The accuracy of the objective function is represented in Table 3.2. R2 values for 

training and testing are 0.99 and 0.96, respectively. Additionally, boundedness check 

step gives the interval in between 0.1 to 0.42 min-1. The boundedness check stage was 

performed in the search space of input values. Therefore, the proposed model gives 

realistic and meaningful results in accordance with the specified engineering 

phenomenon. 

 

Table 3.2: Accuracy check results of the attained model 

Data R2 R2
adjusted 

Minimum 

K (min-1) 

Maximum 

K (min-1) 

Training 0.99 0.9293 
0.11155 0.417288 

Testing 0.96 - 

 

Tables 3.3 and 3.4 give the suggested optimum design for the maximum HTPA 

formation rate according to four optimization methods. In the optimization process, 

the integer and continuous search spaces are considered. Table 3.3 represents the first 

scenario considering continuous search space so that all input values as real numbers. 

As the table shows, all algorithms working independently from each other obtain the 

same K value, 0.42 min-1. Furthermore, inputs are obtained almost the same from the 

algorithms. 
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Table 3.3: Optimization problem results (in continuous search space). 

Optimization 

Algorithms 

Design Variables 

 
Formation 

Rate (K) 

(min-1) 
EtOH/Water 

Ratio
 
(v/v%) 

GO Content
 

(wt.%) 

HT Reaction 

Time (h) 

RS 35.6492 0.332535 24 0.417288 

SA 35.6493 0.332537 24 0.417288 

DE 35.6493 0.332535 24 0.417288 

NM 35.6492 0.332535 24 0.417288 

 

Table 3.4 gives the suggested optimal design considering the integer search space. 

Unlike the first scenario, the same K values were not obtained. However, very close 

values, 0.37 min-1, were achieved. 

 

Table 3.4: Optimization problem results (in integer search space). 

Optimization 

Algorithms 

Design Variables Formation 

Rate (K) 

(min-1) 
EtOH/Water 

Ratio
 
(v/v%) 

GO Content
 

(wt.%) 

HT Reaction 

Time (h) 

NM 36 1 24 0.36861 

SA 37 1 24 0.368553 

DE 36 1 24 0.36861 

RS 53 1 24 0.360739 

 

The results of this study with the referenced article are given in Table 3.5 for 

comparison. The comparison shows that higher values than the results in reference 

study was achieved. 
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Table 3.5. Result comparison with the reference article 

Study 

Design Variables 

 Formation 

Rate (K) 

(min-1) 
EtOH/Water 

Ratio
 

(v/v%) 

GO 

Content
 

(wt.%) 

HT 

Reaction 

Time (h) 

Reference Study 

[106] 
51.49 0.48 19 0.36 

Our study 

(continuous) 
35.65 0.33 24 ~ 0.42 

Our study (integer) 36 1 24 ~ 0.37 

 

3.2 Modeling and Optimum Design of CNT/PVA 

Hybrid Nanofibers as EMI Shielding Material 

As mentioned in the introduction section, recent studies have focused on developing 

absorption-dominant EMI shielding material to eliminate secondary EM wave 

pollution. Therefore, in this published work, a design-based optimization study on 

CNT/PVA nanofiber composite structure was performed for high EMI SE with 

maximum absorption and minimum reflection [72]. Dataset was obtained from a 

literature study that uses an RSM-based design for the same aim [64]. Data modeling 

process was performed via multiple nonlinear neuro-regression approach, while the 

optimization process includes DE, RS, SA, and NM algorithms. 

The optimization problem of this study was defined considering multi-walled CNT 

(MWCNT) content, thickness, and frequency parameters as design variables with the 

objective functions, SER and SEA. Accordingly, the problem is defined as the 

equivalent single objective approach considering the objective functions. In the 

modeling, 12 different regression types (linear, quadratic, trigonometric, exponential, 

and rational forms) were achieved for each objective function to attain the most 

accurate one for the phenomenon. Besides, six-distinct scenarios were specified for 

the optimization to evaluate the problem widely. The purpose here is to achieve 

maximum absorption with minimum SER of the structure. All data is represented as 

training and testing in Table 3.6. 
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Table 3.6: All input and their corresponding output values classified as training and 

testing [64]. 

 Run 

CNTs 

content, C 

(wt%) 

Thickness, 

T (mm) 

Frequency, 

F (GHz) 

SER 

(dB) 

SEA 

(dB) 

Training 1 0 1 12 1.5 2.4 

2 5 2 10 7.0 13.7 

3 2.5 2 10 4.3 7.1 

4 0 1 8 2.1 2.2 

5 10 1 12 10.5 31.4 

6 5 2 10 7.2 14.5 

7 7.5 2 10 10.6 24.1 

8 10 3 8 12.4 35.2 

9 5 2 11 6.6 15.9 

10 5 2 10 7.4 13.7 

11 5 2 10 7.1 14.1 

12 0 3 12 1.1 3.1 

13 10 3 12 10.8 44.7 

Testing 14 0 3 8 1.9 2.9 

15 5 1.5 10 7.2 12.1 

16 5 2.5 10 7.3 16.7 

17 5 2 9 7.7 12.2 

18 10 1 8 13.0 26.3 

 

3.2.1 Modeling Results 

In this section, results of mathematical modeling stage are presented. Table 3.7 show 

the general representation of multiple regression model types considered through 
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modeling stage. Different kinds of model types were considered to find the most 

accurate models. 

 

Table 3.7: Types of multiple regression models used in the study. 

Model Name Nomenclature Formula 

Multiple linear L 

𝑌 = ∑(𝑎𝑖𝑥𝑖)

3

𝑖=1

+ 𝑐 

Multiple linear 

rational 

LR 
𝑌 =

∑ (𝑎𝑖𝑥𝑖)
3
𝑖=1 + 𝑐1

∑ (𝛽𝑖𝑥𝑖)3
𝑖=1 + 𝑐2

 

2nd order 

multiple 

nonlinear 

SON 

𝑌 = ∑ ∑(𝑏𝑖𝑥𝑖𝑥𝑗)

3

𝑖=1

3

𝑗=1

+ ∑(𝑎𝑖𝑥𝑖)

3

𝑖=1

+ 𝑐 

2nd order 

multiple 

nonlinear 

rational 

SONR 
𝑌 =

∑ ∑ (𝑏𝑖𝑥𝑖𝑥𝑗)3
𝑖=1

3
𝑗=1 + ∑ (𝑎𝑖𝑥𝑖)3

𝑖=1 + 𝑐1

∑ ∑ (𝛾𝑖𝑥𝑖𝑥𝑗)3
𝑖=1

3
𝑗=1 + ∑ (𝛽𝑖𝑥𝑖)3

𝑖=1

+ 𝑐2 

1st order 

exponential 

multiple 

nonlinear 

FOEN 

𝑌 = ∑(𝑎𝑖𝑒
𝑥𝑖)

3

𝑖=1

+ 𝑐 

1st order 

exponential 

multiple 

nonlinear 

rational 

FOENR 
𝑌 =

∑ (𝑎𝑖𝑒𝑥𝑖)3
𝑖=1 + 𝑐1

∑ (𝛽𝑖𝑒𝑥𝑖)3
𝑖=1

+ 𝑐2 

2nd order 

exponential 

multiple 

nonlinear 

SOEN 

𝑌 = ∑(𝑎𝑖𝑒
𝑥𝑖

2
)

3

𝑖=1

+ 𝑐 

2nd order 

exponential 

multiple 

nonlinear 

rational 

SOENR 
𝑌 =

∑ (𝑎𝑖𝑒
𝑥𝑖

2
)3

𝑖=1 + 𝑐1

∑ (𝛽𝑖𝑒
𝑥𝑖

2
)3

𝑖=1

+ 𝑐2 

1st order 

trigonometric 

multiple 

nonlinear 

FOTN 

𝑌 = ∑(𝑎𝑖 sin 𝑥𝑖 + 𝜇𝑖 cos 𝑥𝑖)

3

𝑖=1

+ 𝑐 

1st order 

trigonometric 

multiple 

nonlinear 

rational 

FOTNR 
𝑌 =

∑ (𝑎𝑖 sin 𝑥𝑖 + 𝑏𝑖 cos 𝑥𝑖)
3
𝑖=1 + 𝑐1

∑ (𝛽𝑖 sin 𝑥𝑖 + 𝛾𝑖 cos 𝑥𝑖)3
𝑖=1

+ 𝑐2 

2nd order 

trigonometric 

multiple 

nonlinear 

SOTN 𝑌 = ∑(𝑎𝑖 sin 𝑥𝑖 + 𝑏𝑖 cos 𝑥𝑖)

3

𝑖=1

+ ∑(𝛽𝑖 sin2 𝑥𝑖 + 𝛾𝑖 cos2 𝑥𝑖)

3

𝑖=1

+ ∑(𝜇𝑖 sin 𝑥𝑖 cos 𝑥𝑖)

3

𝑖=1

+ ∑ ∑(𝜌𝑖 sin 𝑥𝑖 sin 𝑥𝑗)

3

𝑖=1

3

𝑗=1

+ ∑ ∑(𝛿𝑖 cos 𝑥𝑖 cos 𝑥𝑗)

3

𝑖=1

3

𝑗=1

+ 𝑐 

2nd order 

trigonometric 

multiple 

nonlinear 

rational 

SOTNR 
𝑌

=
∑ (𝑎𝑖 sin 𝑥𝑖 + 𝑏𝑖 cos 𝑥𝑖)

3
𝑖=1 + ∑ (𝛽𝑖 sin2 𝑥𝑖 + 𝛾𝑖 cos2 𝑥𝑖)

3

𝑖=1
+ ∑ (𝜇𝑖 sin 𝑥𝑖 cos 𝑥𝑖)

3
𝑖=1 + ∑ ∑ (𝜌𝑖 sin 𝑥𝑖 sin 𝑥𝑗)3

𝑖=1
3
𝑗=1 + ∑ ∑ (𝛿𝑖 cos 𝑥𝑖 cos 𝑥𝑗)3

𝑖=1
3
𝑗=1 + 𝑐1

∑ (ℎ𝑖 sin 𝑥𝑖 + 𝑘𝑖 cos 𝑥𝑖)
3
𝑖=1 + ∑ (𝑙𝑖 sin2 𝑥𝑖 + 𝑚𝑖 cos2 𝑥𝑖)

3
𝑖=1 + ∑ (𝑛𝑖 sin 𝑥𝑖 cos 𝑥𝑖)

3
𝑖=1 + ∑ ∑ (𝜗𝑖 sin 𝑥𝑖 sin 𝑥𝑗)3

𝑖=1
3
𝑗=1 + ∑ ∑ (𝛼𝑖 cos 𝑥𝑖 cos 𝑥𝑗)3

𝑖=1
3
𝑗=1

+ 𝑐2 
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Tables 3.8 and 3.9 give the accuracy results of the obtained candidate models regarding 

R2 values and boundedness control for outputs SER and SEA. Both tables are prepared 

to compare all models following the accuracy steps. Herein, models are expected to 

pass each of the steps. 

 

Table 3.8: Accuracy check results of obtained models for the SER output in terms of 

R2 values and boundedness check. 

Nomenclature* R2
training 

R2
training-

adjusted 
AICtraining BICtraining R2

testing 
Minimum 

Value (dB) 

Maximum 

Value (dB) 

L1 0.99 0.99 39.3453 44.4299 0.98 1.22 12.70 

LR1 0.99 0.99 31.0368 36.1213 0.99 1.03 12.64 

SON1 0.99 1.00 - - 0.11 -3.8 17.6 

SONR1 0.99 1.00 - - -0.71 0.90 25.06 

FOEN1 0.91 0.75 81.6794 86.764 0.53 3.83 13.46 

FOENR1 0.99 0.99 29.9443 35.0289 -1.92 -8.62×1014 1.41×1016 

SOEN1 0.91 0.77 80.5601 85.6446 0.71 2.17 14.54 

SOENR1 0.99 0.99 37.7508 42.8354 -0.0009 -4.71×1011 11.08 

FOTN1 0.91 2.12 - - 0.79 2.76 11.88 

FOTNR1 0.97 1.36 - - 0.93 -6.21×108 46.30 

SOTN1 0.99 1.00 - - 0.04 0.66 12.19 

SOTNR1 0.99 1.00 - - -4.36 -1.43×1011 9.81×1016 

* Corresponding functions are available in the appendices of the cited article [72]. 
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Table 3.9: Accuracy check results of obtained models for the SEA output in terms of 

R2 values and boundedness check. 

Nomenclature R2
training R2

training-adjusted AICtraining BICtraining R2
testing 

Minimum 

Value (dB) 

Maximum 

Value (dB) 

L2 0.98 0.94 90.1634 95.248 0.86 -3.72 37.26 

LR2 0.99 0.99 45.0651 50.1496 0.97 1.69 44.74 

SON2 0.99 1.00 - - 0.79 -4.18 45.36 

SONR2 0.99 1.00 - - 0.65 2.41 50.16 

FOEN2 0.92 0.79 106.234 111.318 0.16 9.13 39.42 

FOENR2 0.99 0.98 75.6496 80.7342 -1.37 -8.46×1015 9.74×1016 

SOEN2 0.91 0.76 107.778 112.862 0.04 8.73 39.60 

SOENR2 0.96 0.90 96.1488 101.233 -0.39 3.1 33.85 

FOTN2 0.89 2.49 - - 0.82 -0.66 37.49 

FOTNR2 0.95 1.67 - - 0.96 2.24 46.48 

SOTN2 0.99 1.000 - - 0.19 -2.28 28.42 

SOTNR2 0.99 1.000 - - -2.99 -1.19×1017 4.48×1016 

* Corresponding functions are available in the appendices of the cited article [72]. 

 

It is obvious from both Tables 3.8 and 3.9 that it will be made wrong assessment by 

considering the validity of the models according to R2 values only because all models 

have R2 values very close to 1. However, the point is that the models possessing high 

R2 values are incapable of meeting the remainder accuracy stages. Furthermore, Table 

3.10 represents the models determined as problems’ objective functions as a 

consequence of evaluating the accuracy steps. 

 

Table 3.10: Models determined as objective functions of defined optimization 

problems. 

Output Type Model R2
training 

R2
training

-adjusted 

R2
tes

ting 

Min. 

(dB) 

Max. 

(dB) 

SER LR1 
8733.82  + 4216.07 C − 747.909 T − 255.528 F

1838.33 + 91.8026 C − 60.0513 T + 138.879 F
 0.99 0.99 0.99 1.03 12.64 

SEA LR2 
931.323  + 2468.74 C − 146.956 T + 214.237 F 

1891.11  − 44.8854 C − 133.037 T − 35.2433 F 
 0.99 0.99 0.97 1.69 44.74 
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In Figure 3.1, 3D plots are given to show the change behavior of reflection and 

absorption effectiveness by CNT content (wt%) and frequency (GHz). These plots 

include the relationships in which thickness parameters are kept at 1, 1.5, 2, 2.5, and 3 

mm values. It can be seen from the left plot that the reflection effectiveness value 

increases as the CNT content increases, and the change rate decreases. Additionally, 

frequency effect is almost negligible on output 1. Besides, the right-hand plot 

demonstrates that different thickness values cause distinct absorption effectiveness 

values, although these differences are insufficient to alter the main behavior. In 

addition, absorption effectiveness also increases as CNT content increases, and the 

change rate increases, unlike the SER. Moreover, the absorption effectiveness increases 

as frequency increases. 

 

 

Figure 3.1: 3D plots representations of the SER (left) and SEA (right) functions 

depending on CNTs content (C) and frequency (F). Gray, yellow, blue, orange, and 

green surfaces indicate in which cases the thickness (T) values at 1, 1.5, 2, 2.5, and 3 

mm, respectively. 

 

3.2.2 Optimization Results 

Six-distinct scenarios were analyzed for each output in the optimization step where 

DE, NM, RS, and SA algorithms were used. Table 3.11 presents the results of all 

scenarios for minimizing the SER as the objective function of the problem. 
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Table 3.11: Optimization problem scenarios for SER output and their results. 

Scenario 

No 

Optimization 

Problem 

Optimization 

Algorithm 

SER 

(dB)* 

SEA 

(dB) 
Suggested Design 

1 

Min. SER 

0 ≤ C ≤ 10 

1 ≤ T ≤ 3 
8 ≤ F ≤ 12 

NM 1.03 2.86 C = 0, T = 3, F = 12 

DE 1.03 2.86 C = 0, T = 3, F = 12 

SA 1.03 2.86 C = 0, T = 3, F = 12 

RS 1.03 2.86 C = 0, T = 3, F = 12 

2 

Min. SER 

0 ≤ C ≤ 10 

1 ≤ T ≤ 3 

8 ≤ F ≤ 12 

{C, T, F} ∈ 

Integers 

NM 1.03 2.86 C = 0, T = 3, F = 12 

DE 1.03 2.86 C = 0, T = 3, F = 12 

SA 1.16 2.58 C = 0, T = 3, F = 11 

RS 1.36 2.42 C = 0, T = 2, F = 11 

3 

Min. SER 

{C=0 || C=2.5 || 
C=5 || C=7.5 || 

C=10 & 

T=1 || T=1.5 || 
T=2 || T=2.5 || 

T=3 & 

F=8 || F=9 || 
F=10 || F=11 || 

F=12} 

NM 1.03 2.86 C = 0, T = 3, F = 12 

DE 1.03 2.86 C = 0, T = 3, F = 12 

SA 1.03 2.86 C = 0, T = 3, F = 12 

RS 1.03 2.86 C = 0, T = 3, F = 12 

4 

Min. SER 

SEA > 16.2389 

0 ≤ C ≤ 10 

1 ≤ T ≤ 3 
8 ≤ F ≤ 12 

NM 5.96 16.24 C = 4.47185, T = 3, F = 

12 

DE 5.96 16.24 C = 4.47185, T = 3, F = 

12 

SA 5.96 16.24 C = 4.47185, T = 3, F = 

12 

RS 5.96 16.24 C = 4.47185, T = 3, F = 

12 

5 

Min. SER 

SEA > 16.2389 
0 ≤ C ≤ 10 

1 ≤ T ≤ 3 

8 ≤ F ≤ 12 

{C, T, F} ∈ 

Integers 

NM 6.48 18.24 C = 5, T = 3, F = 12 

DE 6.48 18.24 C = 5, T = 3, F = 12 

SA 6.48 18.24 C = 5, T = 3, F = 12 

RS 6.79 17.26 C = 5, T = 3, F = 11 

6 

Min. SER 

SEA > 16.2389 

{C=0 || C=2.5 || 

C=5 || C=7.5 || 
C=10 & 

T=1 || T=1.5 || 

T=2 || T=2.5 || 
T=3 & 

F=8 || F=9 || 

F=10 || F=11 || 
F=12} 

NM 6.48 18.24 C = 5, T = 3, F = 12 

DE 6.48 18.24 C = 5, T = 3, F = 12 

SA 6.48 18.24 C = 5, T = 3, F = 12 

RS 6.48 18.24 C = 5, T = 3, F = 12 

* Gray-filled boxes indicate the objective function of the problem. 
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In the first scenario, all inputs are taken into consideration as real numbers in the 

continuous search space. The input intervals are 0 ≤ C ≤ 10, 1 ≤ T ≤ 3, and 8 ≤ F ≤ 12. 

It is apparent from Table 3.1 that all algorithms gave the same value as 1.03 dB for 

SER and 2.9 dB for SEA with the suggested (optimum) design, C=0 wt%, T=3 mm, 

and F=12 GHz. However, the corresponding values of SEA are not good results for the 

EM wave absorption, which is valid for the entire scenarios when the objective 

function is taken as minimizing the SER in Table 3.1. 

In the second scenario, the same intervals were used as a constraint for the input 

variables within the integer search space. Herein, the same values as in the first one 

were obtained from both DE and NM, while different values were obtained from SA 

and RS algorithms. However, the values are still very near to each other, 1.16 and 1.36 

dB for SER and 2.58 and 2.42 dB for SEA by SA and RS, respectively. The suggested 

design obtained from SA is T=3 mm, C=0 wt%, and F=11 GHz, while from RS is T=2 

mm, C=0 wt%, and F=11 GHz. 

The third scenario includes the optimum case when the design variables have to be 

certain values as 0, 2.5, 5, 7.5, or 10 wt% for CNTs content, 1, 1.5, 2, 2.5, or 3 mm for 

thickness, and 8, 9, 10, 11, or 12 GHz for frequency. In the third scenario, the same 

values were obtained from each optimization algorithm as 1.03 dB for reflection and 

2.86 dB for absorption effectiveness. The suggested design is obtained when content 

is 0 wt%, thickness is 3 mm, and frequency is 12 GHz. 

Besides, because the satisfying values for absorption effectiveness could not be 

achieved in the first three scenarios, the fourth, fifth, and sixth scenarios were defined. 

In the last three scenarios, a constraint was defined as the SEA values must be higher 

than their mean value, 16.24 dB, in the dataset. Other constraints were considered the 

same as the first three scenarios corresponding to the last three scenarios orderly. In 

the fourth scenario, the same values as 5.96 dB for reflection and 16.24 dB for 

absorption are obtained from all algorithms with optimum design as 3 mm for T, 4.47 

wt% for C, and 12 GHz for F. 

In the last two scenarios, 6.48 dB for reflection and 18.24 dB for absorption 

effectiveness are attained from all algorithms except the RS algorithm in the fifth one. 

The optimum design is suggested as T=3 mm, C=5 wt%, and F=12 GHz. In the fifth 
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one, the RS algorithm gave the SER values, 6.79 dB and SEA values, 17.26 dB with 

suggested design values, T=3 mm, C= 5 wt%, and F=11 GHz. However, in the fifth 

scenario, the RS algorithm’s results are still very close to the values achieved from the 

others in the fifth and sixth scenarios. When the results obtained from the scenarios 

are considered, it can be seen that the reflection effectiveness tends to increase with 

the increase in absorption effectiveness of the structure. 

Furthermore, Table 3.12 includes the six-distinct scenarios for the optimization 

problems with the objective function of absorption effectiveness for maximizing. All 

constraints were considered the same as the scenarios in Table 3.11 orderly. 

Additionally, the last three scenarios consist of the constraint specified with a lower 

reflection value than the mean of all reflection effectiveness values, 6.98 dB, in the 

dataset. 
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Table 3.12: Optimization problem scenarios for SEA output and their results. 

Scenario 

No 

Optimization 

Problem 

Optimization 

Algorithm 

SER 

(dB) 

SEA 

(dB)* Suggested Design 

1 

Max. SEA 

0 ≤ C ≤ 10 

1 ≤ T ≤ 3 
8 ≤ F ≤ 12 

NM 10.74 44.74 C = 10, T = 3, F = 12 

DE 10.74 44.74 C = 10, T = 3, F = 12 

SA 10.74 44.74 C = 10, T = 3, F = 12 

RS 10.74 44.74 C = 10, T = 3, F = 12 

2 

Max. SEA 

0 ≤ C ≤ 10 

1 ≤ T ≤ 3 

8 ≤ F ≤ 12 

{C, T, F} ∈ 

Integers 

NM 11.17 42.01 C = 10, T = 3, F = 11 

DE 10.74 44.74 C = 10, T = 3, F = 12 

SA 10.74 44.74 C = 10, T = 3, F = 12 

RS 9.54 30.32 C = 8, T = 3, F = 11 

3 

Max. SEA 

{C=0 || C=2.5 || 
C=5 || C=7.5 || 

C=10 & 

T=1 || T=1.5 || 
T=2 || T=2.5 || 

T=3 & 

F=8 || F=9 || 
F=10 || F=11 || 

F=12} 

NM 10.74 44.74 C = 10, T = 3, F = 12 

DE 10.74 44.74 C = 10, T = 3, F = 12 

SA 10.74 44.74 C = 10, T = 3, F = 12 

RS 10.74 44.74 C = 10, T = 3, F = 12 

4 

Max. SEA 
SER < 6.98333 

0 ≤ C ≤ 10 

1 ≤ T ≤ 3 
8 ≤ F ≤ 12 

NM 6.98 20.39 C = 5.53677, T = 3, F = 12 

DE 6.98 20.39 C = 5.53677, T = 3, F = 12 

SA 6.98 20.39 C = 5.53677, T = 3, F = 12 

RS 6.98 20.39 C = 5.53677, T = 3, F = 12 

5 

Max. SEA 

SER < 6.98333 
0 ≤ C ≤ 10 

1 ≤ T ≤ 3 

8 ≤ F ≤ 12 

{C, T, F} ∈ 

Integers 

NM 6.57 15.91 C = 5, T = 2, F = 12 

DE 6.48 18.24 C = 5, T = 3, F = 12 

SA 6.48 18.24 C = 5, T = 3, F = 12 

RS 6.79 17.26 C = 5, T = 3, F = 11 

6 

Max. SEA 

SER < 6.98333 

{C=0 || C=2.5 || 

C=5 || C=7.5 || 
C=10 & 

T=1 || T=1.5 || 

T=2 || T=2.5 || 
T=3 & 

F=8 || F=9 || 

F=10 || F=11 || 
F=12} 

NM 6.48 18.24 C = 5, T = 3, F = 12 

DE 6.48 18.24 C = 5, T = 3, F = 12 

SA 6.48 18.24 C = 5, T = 3, F = 12 

RS 6.48 18.24 C = 5, T = 3, F = 12 

* Gray-filled boxes indicate the objective function of the problem. 
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In scenarios one and three, the values for absorption and reflection effectiveness were 

achieved from the algorithms as 44.74 and 10.74 dB, respectively, with the design 

variable values, T=3 mm, C=10 wt%, and F=12 GHz. 

Algorithms DE and SA in the second scenario gave the same values as obtained from 

the first and third ones. However, 42.01 dB for absorption and 11.17 dB for reflection 

values were obtained from the NM algorithm. The values from the NM algorithm are 

very close to the achieved values from the other algorithms except for RS. The values 

obtained from the RS algorithm are 30.32 dB and 9.54 dB for absorption and 

reflection, respectively. Accordingly, the suggested design is T=3 mm, C=8 wt%, and 

F=11 GHz. These results from the RS method in the second scenario can be interpreted 

as follows: the inconsistency occurred for the relevant conditions because the RS 

method is not robust for the problem, which has an integer programming solution. 

In the fourth one, the same values for absorption and reflection effectiveness of the 

nanocomposite were achieved as 20.39 and 6.98 dB, respectively, with the design 

variable values, F=12 GHz, T=3 mm, C=5.54 wt%. 

In scenarios five and six, all approaches gave the identical values as 6.48 dB for 

reflection and 18.24 dB for absorption excepting NM and RS methods in the fifth one. 

Accordingly, the input parameters are found as 3 mm of T, 5 wt% of C, and 12 GHz 

of F. However, NM and RS approaches gave different values in the conditions of 

scenario five, but the results are still close to the values from the other methods in the 

scenarios five and six. In the fifth scenario conditions, NM method gave the values 

6.57 dB and 15.91 dB for reflection and absorption, respectively, with the optimum 

design is achieved as T=2 mm, C=5 wt%, and F=12 GHz. Furthermore, in the fifth 

scenario, RS approach gives the values of 6.79 dB for reflection and of 17.26 dB for 

absorption while the suggested design parameters are F=11 GHz, C=5 wt%, and T=3 

mm. 

Consequently, both optimization problems, including the constraints presented in 

Tables 3.11 and 3.12, demonstrate design variables' influences on the outputs. 

Accordingly, materials content is the most effective parameter for both cases of 

objective functions of the problem. Both reflection and absorption features of 

respective nanocomposite material increase with the increase in the content of the 
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material. Furthermore, the EM wave frequency is another effective parameter on the 

outputs. The results show that the frequency parameters are either 11 or 12 GHz 

varying with the defined constraints. However, the thickness parameter has the least 

effect on the absorption and reflection properties of the structure because they have 

the same values (3 mm) in all scenarios, except the NM algorithm in the fifth scenario 

condition having the objective function as the maximization of absorption. The 

attained results related to the effects of the input parameters on the outputs are fully 

coherent with the referenced article [64]. Additionally, in the first and third scenarios 

shown in Table 3.12, the maximum absorption with the minimum reflection 

effectiveness was obtained as 44.74 and 10.74 dB, respectively [72]. 
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Chapter 4 

Results and Discussions 

4.1 Data Acquisition 

The data modeled in this thesis was obtained from the experimental studies conducted 

by the collaborative research group within the scope of the project (2021-GAP-

MÜMF-0042) funded by İzmir Kâtip Çelebi University, Scientific Research Projects 

Unit. This project involves graphene synthesis on a nickel foam substrate via the CVD 

method. After etching the nickel away from the structure, the obtained pristine GF was 

used as a template to synthesize MnO2 nanowires by hydrothermal method considering 

the different combinations of process parameters to obtain the most effective structural 

form for the EMI SE. Because the nanowire structure of MnO2 was intended to be 

synthesized, the hydrothermal process parameters’ (temperature (°C), time (h), and 

molar concentration ratio (M/M)) intervals were specified experimentally. This 

process was performed with multiple repetitions of experimental processes. Although 

several morphologic and crystallographic forms of MnO2 nanostructures were possible 

to synthesize, the relevant intervals of parameters were determined considering the 

domination of the nanowire structure of MnO2 on the GF. During the experimental 

studies performed to identify the parameters’ interval, Scanning Electron Microscopy 

(SEM, Carl Zeiss, İKÇÜ), X-Ray Diffractometer (XRD, Bruker D2 Phaser, İKÇÜ), 

and Raman Spectroscopy (Raman Spectrometer, Renishaw/In Via, İKÇÜ) analysis 

were conducted to identify the morphological, crystallographic, and quality 

characteristics (e.g., layer numbers and crystallinity of GF) of obtained structures. 

After determining the parameters’ interval, a 2-level full factorial design was carried 

out to obtain a combination of these parameters using Design-Expert software. The 

research group performed the experimental procedures according to the obtained 
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experimental runs from the Design of Experiment (DoE) method with the relevant 

characterization of the samples. The EMI SE of the samples were measured in 8-12 

GHz bandwidth (X-band) via a two-port vector network analyzer (VNA, Agilent 

Technologies N5230C, DEU/EMUM) by converting the S-parameters to SE 

characteristics considering the equations (1.1), (1.2), (1.3), and (1.4). The respective 

dataset is presented in Table 4.1. 

Table 4.1: All inputs and their corresponding output values 

 
Run 

Temperature 

(°C) 
Time (h) 

Concentration 

(M/M) 

SER 

(dB) 

SEA 

(dB) 

Training 1 140 6 0.07 10.351 21.8931 

2 140 12 0.07 9.4474 19.1939 

3 180 12 0.07 8.9753 16.2173 

4 140 6 0.2 9.01002 25.0281 

5 180 6 0.2 9.75106 17.7674 

6 140 12 0.2 8.87389 40.2124 

Testing 7 180 6 0.07 9.95189 23.2322 

 8 180 12 0.2 8.7958 17.4203 

 

4.2 Problem Definition 

This thesis intends to perform a systematic design-based optimization study on 

GF/MnO2 NW nanocomposite as an EMI shielding material. In line with this purpose, 

mathematical optimization problems were defined considering the hydrothermal 

process parameters (temperature (T), time (t), concentration (C)) as design variables 

with objective functions SER and SEA of the nanocomposite structure. Herein, the 

problem is defined as the equivalent single objective approach considering both 

objective functions. Since this thesis study's objective includes developing absorption-

dominant shielding material, the objective function is to maximize SEA with minimum 

SER instead of maximizing the SET. The data modeling step was conducted via 

multiple nonlinear neuro-regression approach, and 16 different regression types 

(linear, logarithmic, trigonometric, exponential, quadratic, and their rational forms) 

were compared for each objective function to achieve the most accurate one. The 

optimization procedure was carried out via four direct search algorithms (SA, NM, RS, 
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and DE). Besides, three-distinct scenarios were identified for each optimization 

problem to evaluate the phenomenon widely. 

4.3 Modeling Results 

The mathematical modeling stage results are presented in this section. In this step, 

different regression model types were considered to find the most accurate models. 

Table 4.2 shows the general representation of multiple logarithmic regression forms 

used in the modeling stage, together with the model types given in Table 3.7. 

 

Table 4.2: General representation of multiple logarithmic regression models. 

Model Name Nomenclature Formula 

1st order logarithmic 

multiple nonlinear 
FOLN 

𝑌 = ∑(𝑎𝑖𝐿𝑜𝑔[𝑥𝑖]) + 𝑐

3

𝑖=1

 

1st order logarithmic 

multiple nonlinear 

rational 

FOLNR 
𝑌 =

∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖]) + 𝑐1
3
𝑖=1

∑ (𝛽𝑗𝐿𝑜𝑔[𝑥𝑗]3
𝑗=1

+ 𝑐2 

2nd order logarithmic 

multiple nonlinear 
SOLN 

𝑌 = ∑ ∑(𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])

3

𝑗=1

+ ∑(𝑎𝑖𝐿𝑜𝑔[𝑥𝑖]) + 𝑐

3

𝑖=1

3

𝑘=1

 

2nd order logarithmic 

multiple nonlinear 

rational 

SOLNR 
𝑌 =

∑ ∑ (𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘]) + ∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])3
𝑖=1 + 𝑐1

3
𝑗=1

3
𝑘=1

∑ ∑ (𝑎𝑙𝐿𝑜𝑔[𝑥𝑙𝑥𝑚]) + ∑ (𝑎𝑛𝐿𝑜𝑔[𝑥𝑛])3
𝑛=1

3
𝑙=1

3
𝑚=1

+ 𝑐2 

 

Tables 4.3 and 4.4 give the obtained models’ accuracy results regarding R2 values and 

boundedness control for both outputs, SER and SEA, respectively. Both tables are 

prepared to compare all models in accordance with accuracy steps. The eligibility 

criteria as follows: 

(i) It can be determined the prediction ability of the candidate models’absorption 

and reflection effectiveness of the nanocomposite by considering R2 values. 

(ii) It can be specified whether the obtained models have functional limitation by 

considering their intervals. 
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Table 4.3: Accuracy check results of obtained models for the SER output in terms of 

R2 values and boundedness check. 

Nomenclature* R2
training 

R2
training-

adjusted 
AICtraining BICtraining R2

testing 
Minimum 

Value (dB) 

Maximum 

Value (dB) 

L1 0.99 1 - - 0.92 8.62 10.16 

LR1 1 1 - - -2997.64 -∞ ∞ 

SON1 1 1 - - 0.40 8.87 10.74 

SONR1 0.99 1 - - -0.92 8.40 11.01 

FOEN1 0.99 1 - - 0.92 8.62 10.16 

FOENR1 0.99 1 - - 0.73 9.1 9.8 

SOEN1 1 1 - - -1.09 8.42 11.17 

SOENR1 0.99 1 - - 0.09 8.36 9.56 

FOLN1 0.99 1 - - 0.92 8.62 10.16 

FOLNR1 0.99 1 - - 0.73 -3.56×1014 4.72×108 

SOLN1 1 1 - - 0.55 8.06 10.35 

SOLNR1 0.99 1 - - 0.32 8.49 10.55 

FOTN1 0.99 1 - - 0.92 -5.45 14.46 

FOTNR1 0.73 1 - - -200.15 -1.05×1014 7.3×1013 

SOTN1 1 1 - - -0.92 -7.55 14.11 

SOTNR1 0.75 1 - - -194.58 -4.86×107 9.76×1012 

* Corresponding functions are available in the appendices. 
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Table 4.4: Accuracy check results of obtained models for the SEA output in terms of 

R2 values and boundedness check. 

Nomenclature* R2
training 

R2
training-

adjusted 
AICtraining BICtraining R2

testing 
Minimum 

Value (dB) 

Maximum 

Value (dB) 

L2 0.98 1.1 - - -17.6 7.83 35.74 

LR2 0.92 1.2 - - -2.69 13.6 28.9 

SON2 1 1 - - -14.5 16.2 40.2 

SONR2 0.93 1 - - -2.95 17.1 30.3 

FOEN2 0.98 1.1 - - -17.6 7.83 35.74 

FOENR2 0.93 1 - - -0.03 20.19 29.67 

SOEN2 1 1 - - -25.5 14.97 49.9 

SOENR2 0.93 1 - - 0.03 19.32 20.14 

FOLN2 0.98 1.1 - - -17.6 7.83 35.74 

FOLNR2 0.99 1 - - -5.76 14.3 39.5 

SOLN2 1 1 - - -17.5 16.2 40.2 

SOLNR2 1 1 - - -5.3 16.2 40.2 

FOTN2 0.98 1 - - -17.6 -26.1 50 

FOTNR2 0.98 1 - - -8.7 -6.6×1012 4.07×1011 

SOTN2 1 1 - - -25.7 -122.7 76.97 

SOTNR2 0.87 1 - - -41.15 -2.02×108 1.3×1012 

* Corresponding functions are available in the appendices. 

 

As seen from Table 4.3, the R2
training values of all models are almost 1 except for 

FOTNR1 and SOTNR1, which have values of almost 0.75. However, only four 

models, L1, FOEN1, FOLN1, and FOTN1, have valid R2 testing value, 0.92. Among 

them, when considering the phenomenon, the FOTN1 model form was defined in the 

unrealistic interval because the minimum reflection effectiveness value is -5.45 dB. 

On the contrary, the boundedness check is also successful for L1, FOEN1, and FOLN1 

models because of having intervals from 8.62 to 10.16 dB. Furthermore, all models 

have training R2 values between almost 0.90-1 for the SEA output, as shown in Table 

4.4. However, none of them has valid testing R2 values. 
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It is obvious from both Tables 4.3 and 4.4 that if the model validity is carried out 

according to R2 values only, it will be made wrong assessment because almost entire 

models have R2 values very close to 1. Nevertheless, the point is that the models 

possessing high R2 values are incapable of meeting the remainder accuracy stages. 

Therefore, mathematical optimization studies to design engineering phenomena must 

be performed systematically. Additionally, if any traditional regression model types 

would not meet the criteria, their hybrid forms should be considered to achieve a solid 

objective function. In the case of this thesis study, it can be seen from Table 4.4 that 

all models failed to pass the accuracy steps. Therefore, a hybrid model was achieved 

to identify the SEA of nanocomposite structure. Furthermore, although some valid 

models were obtained for the objective function SER, a hybrid model was also attained 

to find a more accurate model. The obtained models determined as objective functions 

are shown in Mathematica language form as follows: 

 

SER= 

 

SEA= 

 

 

where x1, x2, and x3 indicate the hydrothermal process parameters, temperature, time, 

solution concentration, respectively. 
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Furthermore, Table 4.5 shows the accuracy results of each objective functions. As can 

be seen, all accuracy step was met via both obtained hybrid models. 

 

Table 4.5: Accuracy results of obtained hybrid models for each objective function. 

Output R2
training R2

training-adjusted R2
testing Min. (dB) Max. (dB) 

SER 1 1 1 8 12.63 

SEA 1 1 1 15 66.17 

 

Additionally, Figure 4.1 shows the 3D plots to evaluate the relationships between the 

hydrothermal process parameters, temperature and time with SEA and SER. The plots 

were prepared considering the concentration value taken as constant at 0.07 and 0.2 

M/M representing the minimum and maximum values of its interval. It is apparent 

from Figure 4.1 that both graphs have almost the same nonlinear behavior that is valid 

for the relevant constant values of concentration. When the left-hand figure is 

observed, the SER function has multiple maximum and minimum points depending on 

the time and temperature. Moreover, the repetitive behavior of the 3D plots belonging 

to the SER function is changed more frequently with altering in the temperature than 

the time variable. In addition, even if the two-distinct constant concentration values do 

not change the fundamental behavior of the curves, they shift the peak locations in line 

with the temperature axis with almost the same results. Besides, the same 

interpretations can be made for the relationships between the SEA with temperature 

and time parameters when the figure on the right is considered. However, the two-

distinct concentration values significantly affect obtaining the maximum absorption 

effectiveness of nanocomposite. Accordingly, when the concentration value is kept at 

0.2 M/M, the SEA function can increase over 60 dB at specific time and temperature 

values. 
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Figure 4.1: 3D plots representations of the SER (left) and SEA (right) functions 

depending on temperature and time at certain concentration values. Green and orange 

surfaces indicate in which cases the concentration values at 0.07 and 0.2 M/M, 

respectively. 

 

4.3 Optimization Results 

In the optimization step, three distinct scenarios were analyzed for each output. The 

defined optimization problems were solved via NM, SA, DE, and RS algorithms. Table 

4.6 show the results of all scenarios for minimizing reflection effectiveness as 

objective function of the problem.  
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Table 4.6: Optimization problem scenarios for SER output and their results. 

Scenario 

No 

Optimization 

Problem 

Optimization 

Algorithm 

SER 

(dB)* 

SEA 

(dB) Suggested Design 

1 

Min. SER 

140 ≤ T ≤ 180 

6 ≤ t ≤ 12 

0.07 ≤ C ≤ 0.2 

NM 8 16.07 T = 160.66, t = 9.07, C = 0.13 

SA 8 16.57 T = 140.23, t = 9.2, C = 0.10 

DE 8 15.86 T = 150.16, t = 9.11, C = 0.15 

RS 8 56.25 T = 159.33, t = 11.41, C = 0.2 

2 

Min. SER 

140 ≤ T ≤ 180 

6 ≤ t ≤ 12 

0.07 ≤ C ≤ 0.2 

{T, t} ∈ Integers 

NM 8 15.43 T = 176, t = 9, C = 0.11 

SA 8 15.57 T = 176, t = 9, C = 0.14 

DE 8 15.71 T = 176, t = 9, C = 0.17 

RS 8 40.42 T = 159, t = 8, C = 0.16 

3 

Min. SER 

{T=150 || T=160 || 

T=170 || & 

t=8 || t=10 & 

C=0.08 || C=0.09 || 

C=0.1} 

NM 8.66 29.3505 T = 150, t = 8, C = 0.08 

SA 8.66 29.3505 T = 150, t = 8, C = 0.08 

DE 8.66 29.3505 T = 150, t = 8, C = 0.08 

RS 8.66 29.3505 T = 150, t = 8, C = 0.08 

* Gray-filled boxes indicate the objective function of the problem. 

 

The first case scenario includes all inputs considered as real numbers in the continuous 

search space. In other words, these constraints were determined to examine whether 

nanocomposite structures can achieve the optimum SE in any value of hydrothermal 

process parameters’ interval, 140 ≤ T ≤ 180, 6 ≤ t ≤ 12, and 0.07 ≤ C ≤ 0.2. As seen 

from Table 4.6, all algorithms gave the same value, 8 dB, for the objective function 

SER. However, different SEA values were obtained by four algorithms because the 

same value of SER was achieved from each at different independent variable values of 

the objective function. Accordingly, except for the RS method, close results were 

obtained for the SEA value as 16.07, 16.57, and 15.86 dB by NM, SA, and DE, 

respectively, with different suggested design values. The NM algorithm gave the 

suggested design as T=160.66 °C, t=9.07 h, and C=0.13 M/M, while T=140.23 °C, 

t=9.2 h, and C=0.1 M/M values were obtained from the SA algorithm. Furthermore, 

the suggested design values by the DE algorithm are T=150.16 °C, t=9.11 h, and 

C=0.15 M/M. Unlike the three algorithms, a higher SEA value, 56.25 dB, was obtained 



64 

 

from the RS approach when design variables are 159.33 °C, 11.41 h, and 0.2 M/M for 

T, t, and C, respectively. 

In the second case scenario, the constraints were identified as integer search space for 

T and t variables with the same intervals as scenario one. In other words, since any 

random values might not be adjusted depending on the sensibility of experimental 

conditions, this scenario was identified to investigate whether the nanocomposite 

structure can possess any optimum SE value when the process parameters (T and t) are 

controllable integer values experimentally. Herein, the same value (8 dB) with distinct 

suggested design parameters was also acquired from the entire algorithms for the 

objective function SER. However, the obtained SEA values from each method differ 

from the first scenario. Thus, close values of each other were achieved from NM, SA, 

and DE approaches as 15.43, 15.57, and 15.71 dB, respectively. Additionally, these 

three algorithms gave the same values, 176 °C for T and 9 h for t, but obtained C values 

from NM, SA, and DE are different as 0.11, 0.14, and 0.17 M/M, respectively. On the 

other hand, a higher value, 40.42 dB, for SEA was achieved from the RS algorithm 

with the suggested design, T=159 °C, t=8 h, and C=0.16 M/M. The results from both 

scenarios demonstrate that the same values for objective function can be achieved from 

all. For the relevant case, obtaining different optimum designs and, therefore, different 

SEA values reveals that there are distinct combinations to reach the same output values. 

Furthermore, the RS results obtained in the first two scenarios demonstrate that there 

are some points for input variables achieving a high SEA value with minimum SER 

when the problem is defined as minimizing SER. 

In the third case scenario, optimum cases were examined when the design variables 

are specific values as 150, 160, or 170 °C for T, 8 or 9 h for t, and 0.08, 0.09, or 0.1 

M/M for C. Since the obtained data have been subjected to the full factorial design 

with 2-level before experimental processes, these values were determined considering 

intermediate values of inputs. Herein, it was aimed to predict whether any desirable 

optimal SE value of nanocomposites is possible when hydrothermal process 

parameters are any of the relevant values. Accordingly, the same results for all 

parameters were attained from the four algorithms as SER=8.66 dB and SEA=29.35 dB 

when T=150 °C, t=8 h, and C=0.08 M/M. From the optimization perspective, the third 
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scenario results show that all algorithms give consistent results in the relevant 

conditions, even if the value, 29.35 dB, is not satisfying for the SEA phenomenon. 

Moreover, Table 4.7 represents the optimization problem results in which the objective 

function is considered as maximizing the absorption effectiveness of the 

nanocomposite structure. It should be noted that all scenarios are the same, as 

considered in Table 4.6. In the first scenario, SA, DE, and RS algorithms gave the 

same results for SEA and SER, as 67.03 and 11.7 dB, respectively. Among them, SA 

and DE methods ensure the result with the same input values as T=152.2 °C, t=7.45 h, 

and C=0.2 M/M, while the RS ensures the same values with different T, 158.48 °C. 

However, the NM algorithm obtained different values, 66.17 dB for SEA and 8.74 dB 

for SER, by ensuring close values to other methods for the respective condition. 

Accordingly, the suggested optimum design by the NM algorithm is T=152.43 °C, 

t=10.91 h, and C=0.2 M/M. 

 

Table 4.7: Optimization problem scenarios for SEA output and their results. 

Scenario 

No 

Optimization 

Problem 

Optimization 

Algorithm 

SER 

(dB) 

SEA 

(dB)* Suggested Design 

1 

Max. SEA 

140 ≤ T ≤ 180 

6 ≤ t ≤ 12 

0.07 ≤ C ≤ 0.2 

NM 8.74 66.17 T = 152.43, t = 10.91, C = 0.2 

SA 11.7 67.03 T = 152.2, t = 7.45, C = 0.2 

DE 11.7 67.03 T = 152.2, t = 7.45, C = 0.2 

RS 11.7 67.03 T = 158.48, t = 7.45, C = 0.2 

2 

Max. SEA 

140 ≤ T ≤ 180 

6 ≤ t ≤ 12 

0.07 ≤ C ≤ 0.2 

{T, t} ∈ Integers 

NM 8.25 63.83 T = 152, t = 11, C = 0.2 

SA 8.50 65.77 T = 146, t = 11, C = 0.2 

DE 8.61 66.03 T = 165, t = 11, C = 0.2 

RS 8.39 65.08 T = 171, t = 11, C = 0.2 

3 

Max. SEA 

{T=150 || T=160 || 

T=170 || & 

t=8 || t=10 & 

C=0.08 || C=0.09 || 

C=0.1} 

NM 8.66 29.35 T = 150, t = 8, C = 0.08 

SA 8.66 29.35 T = 150, t = 8, C = 0.08 

DE 8.66 29.35 T = 150, t = 8, C = 0.08 

RS 8.66 29.35 T = 150, t = 8, C = 0.08 

* Gray-filled boxes indicate the objective function of the problem. 
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For the second case scenario, NM, SA, DE, and RS approaches gave very close results 

to each other as 63.83, 65.77, 66.03, and 65.08 dB for SEA, and 8.25, 8.50, 8.61, and 

8.39 dB for SER, respectively. In addition, all algorithms attained the relevant results 

suggesting the same t and C values, 11 h and 0.2 M/M, respectively. However, T values 

differ from each other as 152 °C of NM, 146 °C of SA, 165 °C of DE, and 171 °C of 

RS. Therefore, for the relevant scenario conditions, the temperature alteration only 

affects the objective function slightly when other process parameters are kept at 11 h 

and 0.2 M/M. 

In the third one, the same results for all parameters were attained from each algorithm 

as SER=8.66 dB and SEA=29.35 dB with T=150 °C, t=8 h, and C=0.08 M/M. Besides, 

in this case, the obtained results are the same as the optimization problem outcomes in 

Table 4.6. For the same design phenomenon, the case of achieving the same results in 

optimization problems having different objective functions with the same conditions 

demonstrates the high prediction capability of the proposed models. 

Furthermore, the results demonstrated that the effects of the inputs on the outputs 

change depending on the defined problem conditions. For example, the second 

scenario in Table 4.7 proves that very effective SEA and SER values can be obtained at 

different temperatures with the same duration and molar ratio. Also, results from 

scenarios 1 and 2 in both Tables 4.6 and 4.7 show that the same objective values can 

be acquired at different production parameters. 

The acquired results also demonstrate that when the objective function of the relevant 

problem is determined as maximizing the SEA of the nanocomposite, considerable 

results up to 67 dB can be obtained with a minimum value of SER as far as possible. 

On the other hand, effective SEA values with minimum reflection effectiveness can be 

achieved, as seen from scenario 1 in Table 4.6. Another significant outcome of this 

thesis study is that, in the optimization problems, the proposed models predicted a 

higher total SE of nanocomposite than that of the used experimental dataset. 

As mentioned before, this interval of process parameters was identified considering 

the growth of MnO2 nanowires on the GF in our experimental conditions. Changing 

the hydrothermal process parameters according to distinct combinations in a certain 

interval affects the structure in various aspects (e.g., the aspect ratio of MnO2 
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nanowires and their homogeneous distribution on the GF structure). Accordingly, the 

morphological aspect of materials can be very effective on their EMI SE in several 

ways, such as the number of trapping centers in the structure, the electrical 

conductivity, permittivity and permeability characteristics of the nanocomposite. 

Therefore, results from the mathematical processes can give the most influential 

parameter combinations to obtain satisfying SE characteristics of the nanocomposite 

structures without needing extra raw materials and time consumption. 
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Chapter 5 

Conclusion 

The nanocomposite form of CVD-based GF and MnO2 nanowires is promising 

material for a wide variety of application areas owing to their unique properties. 

Therefore, it is crucial to gain insight into the interaction of the morphological and 

crystallographic forms of MnO2 nanomaterials synthesized on the CVD-based GF with 

hydrothermal process parameters to comprehend the process-performance 

relationship. Furthermore, since all production parameters in considered intervals 

might not be performed experimentally, the mathematical consideration of the 

experimental processes plays a key role in decreasing the time, cost, and raw material 

consumption by giving an estimation capability. 

Ever-growing data science subject brings along popular data modeling algorithms to 

get insight into the phenomena through existing data. Additionally, great numbers of 

studies on adapting the relevant algorithms into engineering problem are performed. 

However, as mentioned in Chapter 1, available methods include some insufficient 

approaches in terms of complex engineering design. Therefore, this thesis is based on 

proposing a systematic mathematical perspective for design optimization. 

In line with the aim of this thesis study, multiple nonlinear neuro-regression modeling-

based optimization approach was carried out considering Graphene Foam/MnO2 

nanocomposite structure as EMI shielding material. Because the production 

parameters effect the various nanomaterials’ feature through crystallographic and 

morphologic structure, the hydrothermal process parameters effect on the shielding 

effectiveness of final GF/MnO2 nanocomposite were investigated. Therefore, the 

optimization problem was defined considering the temperature, duration, and 

KMnO4/HCl molar ratios as design variables, while the objective functions were 

identified as maximizing the SEA with minimum SER of nanocomposite. The dataset 
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was obtained from the experimental studies performed within the scope of a 

collaborative project study (2021-GAP-MÜMF-0042) funded by İzmir Kâtip Çelebi 

University, Scientific Research Projects Unit. 

In the modeling stage, hybrid models were proposed for each objective functions 

because the valid accuracy could not be achieved using standard regression models. In 

the optimization step, three distinct scenario was considered for each problem. 

In case of considering the SEA as objective function, significant results were attained 

up to 67 dB for SEA with minimum SER, 8 dB. On the contrary, unsatisfying results 

for the physical phenomenon were estimated when objective function is considered as 

minimizing SER. However, a considerable result was still achieved from the RS 

algorithm in the first scenario, as 56.25 dB for SEA and 8 dB for SER. 

From reliability regard, achieving the same or similar results through different direct 

search algorithms based on independent bases of each other increases the prospect of 

acquiring global optimum. Moreover, considering different scenarios allows the user 

to evaluate alternative results. In optimization problems, the constraint conditions are 

defined depending on the concerned phenomenon needs and/or manufacturing process 

feasibility. Most cases might not enable precise control of the respective parameters, 

so the input intervals in continuous search space can become unpractical, even if 

obtaining good results through mathematical procedures. Hence, in terms of 

applicability, the preferred modeling approach has a vital role in obtaining a robust 

objective function for the optimization problems. 

Furthermore, even though very effective predictions can be made via proposed 

methodology, it must be performed for different design processes because the 

concerned problem would inherently have distinct features. Therefore, the situation 

requirements considered elaborately. However, it is believed that the introduced 

methodology in this thesis study is applicable enough to utilize the materials design-

concerned studies possessing controllable parameters. From this point of view, the 

proposed method has high potential regarding feasibility for any materials science-

concerned studies since it can meet their bases as part of processing-structure-

properties-performance relationships.  
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Appendix A  

Traditional Regression Model Forms 

Obtained for Each Output 

𝐿1 =  11.5353 − 0.00143494 𝑥1 − 0.137192 𝑥2 − 5.03046 𝑥3  

𝐿𝑅1 =  (13.3846 − 0.0958014 𝑥1 + 0.369965 𝑥2 − 4.37463 𝑥3)/(1.36354 −

0.0101025 𝑥1 + 0.042065 𝑥2 − 0.276936 𝑥3)  

𝑆𝑂𝑁1 =  7.521 + 0.0230394 𝑥1 − 0.0000223909 𝑥1^2 + 0.293349 𝑥2 −

0.00288939 𝑥1 𝑥2 − 0.00601727 𝑥2^2 + 1.59207 𝑥3 + 0.0999399 𝑥1 𝑥3 +

0.983936 𝑥2 𝑥3 − 117.787 𝑥3^2  

𝑆𝑂𝑁𝑅1 =  (32595.8 + 1.04658 ∗ 10^7 𝑥1 + 1.58761 ∗ 10^7 𝑥1^2 + 9.40566 ∗

10^6 𝑥2 + 1.98094 ∗ 10^8 𝑥1 𝑥2 + 3.99786 ∗ 10^7 𝑥2^2 − 393477. 𝑥3 −

3.34183 ∗ 10^7 𝑥1 𝑥3 + 341209. 𝑥2 𝑥3 − 27015.1 𝑥3^2)/

(−245901. −7.74532 ∗ 10^7 𝑥1 + 467499. 𝑥1^2 − 7.35794 ∗ 10^7 𝑥2 +

6.69771 ∗ 10^7 𝑥1 𝑥2 − 3.13402 ∗ 10^8 𝑥2^2 + 4.06779 ∗ 10^6 𝑥3 + 3.64731 ∗

10^8 𝑥1 𝑥3 + 1.54575 ∗ 10^6 𝑥2 𝑥3 + 278019. 𝑥3^2)  

𝐹𝑂𝑇𝑁1 =  2.54011 − 5.59775 𝐶𝑜𝑠[𝑥1] + 3.5402 𝐶𝑜𝑠[𝑥2] + 2.6306 𝐶𝑜𝑠[𝑥3] +

1.29119 𝑆𝑖𝑛[𝑥1] + 1.59967 𝑆𝑖𝑛[𝑥2] − 4.72293 𝑆𝑖𝑛[𝑥3]  

𝐹𝑂𝑇𝑁𝑅1 =  (−1.42217 ∗ 10^9 + 4.16495 ∗ 10^9 𝐶𝑜𝑠[𝑥1] − 1.51965 ∗

10^9 𝐶𝑜𝑠[𝑥2] − 1.36443 ∗ 10^9 𝐶𝑜𝑠[𝑥3] + 1.58737 ∗ 10^10 𝑆𝑖𝑛[𝑥1] + 5.6623 ∗

10^7 𝑆𝑖𝑛[𝑥2] − 4.98881 ∗ 10^8 𝑆𝑖𝑛[𝑥3])/(−2.38404 ∗ 10^9 + 3.05625 ∗

10^9 𝐶𝑜𝑠[𝑥1] − 1.77479 ∗ 10^9 𝐶𝑜𝑠[𝑥2] − 2.64413 ∗ 10^9 𝐶𝑜𝑠[𝑥3] + 9.15519 ∗

10^9 𝑆𝑖𝑛[𝑥1] + 1.80315 ∗ 10^9 𝑆𝑖𝑛[𝑥2] + 1.7911 ∗ 10^9 𝑆𝑖𝑛[𝑥3])  
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𝑆𝑂𝑇𝑁1 =  0.886571 − 1.68926 𝐶𝑜𝑠[𝑥1] + 2.07224 𝐶𝑜𝑠[𝑥1]^2 +

1.17636 𝐶𝑜𝑠[𝑥2] − 2.19985 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥2] + 1.49666 𝐶𝑜𝑠[𝑥2]^2 +

0.916279 𝐶𝑜𝑠[𝑥3] − 1.72678 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥3] + 1.22247 𝐶𝑜𝑠[𝑥2] 𝐶𝑜𝑠[𝑥3] +

0.946317 𝐶𝑜𝑠[𝑥3]^2 + 0.650879 𝑆𝑖𝑛[𝑥1] − 0.527579 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥1] +

0.895095 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥1] + 0.687137 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥1] + 1.05714 𝑆𝑖𝑛[𝑥1]^2 −

0.0267343 𝑆𝑖𝑛[𝑥2] + 0.461293 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥2] − 0.459445 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥2] +

0.0292193 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥2] + 0.290978 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥2] − 2.89767 𝑆𝑖𝑛[𝑥2]^2 −

1.03979 𝑆𝑖𝑛[𝑥3] − 4.21364 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥3] − 3.14717 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥3] −

0.968275 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥3] − 5.45237 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥3] −

21.6817 𝑆𝑖𝑛[𝑥2] 𝑆𝑖𝑛[𝑥3] − 23.4097 𝑆𝑖𝑛[𝑥3]^2  

𝑆𝑂𝑇𝑁𝑅1 =  (−1.19906 ∗ 10^11 + 3.78753 ∗ 10^11 𝐶𝑜𝑠[𝑥1] − 6.12028 ∗

10^10 𝐶𝑜𝑠[𝑥1]^2 − 4.32779 ∗ 10^11 𝐶𝑜𝑠[𝑥2] + 3.45022 ∗

10^11 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥2] − 9.80331 ∗ 10^10 𝐶𝑜𝑠[𝑥2]^2 − 4.72371 ∗

10^11 𝐶𝑜𝑠[𝑥3] + 3.73637 ∗ 10^11 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥3] − 4.2651 ∗

10^11 𝐶𝑜𝑠[𝑥2] 𝐶𝑜𝑠[𝑥3] − 1.16315 ∗ 10^11 𝐶𝑜𝑠[𝑥3]^2 + 7.92053 ∗

10^11 𝑆𝑖𝑛[𝑥1] − 3.84107 ∗ 10^11 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥1] + 7.29197 ∗

10^11 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥1] + 7.82796 ∗ 10^11 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥1] − 5.87031 ∗

10^10 𝑆𝑖𝑛[𝑥1]^2 + 1.95346 ∗ 10^11 𝑆𝑖𝑛[𝑥2] − 1.47051 ∗

10^11 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥2] + 1.7268 ∗ 10^11 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥2] + 1.91784 ∗

10^11 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥2] − 2.90531 ∗ 10^11 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥2] − 2.18728 ∗

10^10 𝑆𝑖𝑛[𝑥2]^2 − 7.82903 ∗ 10^10 𝑆𝑖𝑛[𝑥3] + 5.73232 ∗

10^10 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥3] − 6.86185 ∗ 10^10 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥3] − 7.68912 ∗

10^10 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥3] + 1.09273 ∗ 10^11 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥3] + 3.63642 ∗

10^10 𝑆𝑖𝑛[𝑥2] 𝑆𝑖𝑛[𝑥3] − 3.59128 ∗ 10^9 𝑆𝑖𝑛[𝑥3]^2)/(−9.71461 ∗ 10^10 +

2.9054 ∗ 10^11 𝐶𝑜𝑠[𝑥1] − 4.63368 ∗ 10^10 𝐶𝑜𝑠[𝑥1]^2 − 3.52763 ∗

10^11 𝐶𝑜𝑠[𝑥2] + 2.60745 ∗ 10^11 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥2] − 8.03865 ∗

10^10 𝐶𝑜𝑠[𝑥2]^2 − 3.85668 ∗ 10^11 𝐶𝑜𝑠[𝑥3] + 2.87838 ∗

10^11 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥3] − 3.44183 ∗ 10^11 𝐶𝑜𝑠[𝑥2] 𝐶𝑜𝑠[𝑥3] − 9.56995 ∗

10^10 𝐶𝑜𝑠[𝑥3]^2 + 5.69145 ∗ 10^11 𝑆𝑖𝑛[𝑥1] − 2.83769 ∗

10^11 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥1] + 5.03289 ∗ 10^11 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥1] + 5.62555 ∗

10^11 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥1] − 5.08093 ∗ 10^10 𝑆𝑖𝑛[𝑥1]^2 + 1.53553 ∗

10^11 𝑆𝑖𝑛[𝑥2] − 1.21468 ∗ 10^11 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥2] + 1.36521 ∗
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10^11 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥2] + 1.65518 ∗ 10^11 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥2] − 2.54507 ∗

10^11 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥2] − 1.67596 ∗ 10^10 𝑆𝑖𝑛[𝑥2]^2 − 4.16425 ∗

10^10 𝑆𝑖𝑛[𝑥3] + 3.49748 ∗ 10^10 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥3] − 8.14852 ∗

10^10 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥3] − 4.11503 ∗ 10^10 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥3] + 7.80625 ∗

10^10 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥3] − 8.01173 ∗ 10^10 𝑆𝑖𝑛[𝑥2] 𝑆𝑖𝑛[𝑥3] − 1.44653 ∗

10^9 𝑆𝑖𝑛[𝑥3]^2)  

𝐹𝑂𝐿𝑁1 =  11.759 − 0.228389 𝐿𝑜𝑔[𝑥1] − 1.18755 𝐿𝑜𝑔[𝑥2] −

0.622925 𝐿𝑜𝑔[𝑥3]  

𝐹𝑂𝐿𝑁𝑅1 =  (1371.18 − 118786. 𝐿𝑜𝑔[𝑥1] + 216733. 𝐿𝑜𝑔[𝑥2] −

101961. 𝐿𝑜𝑔[𝑥3])/(−8918.12 − 11126.2 𝐿𝑜𝑔[𝑥1] + 24329.3 𝐿𝑜𝑔[𝑥2] −

10324.7 𝐿𝑜𝑔[𝑥3])  

𝑆𝑂𝐿𝑁1 =  −4.00089 + 2.01248 𝐿𝑜𝑔[𝑥1] + 0.965765 𝐿𝑜𝑔[𝑥1]^2 +

1.80241 𝐿𝑜𝑔[𝑥2] − 1.99022 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥2] + 2.22921 𝐿𝑜𝑔[𝑥2]^2 −

4.0979 𝐿𝑜𝑔[𝑥3] + 3.28405 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥3] + 1.05468 𝐿𝑜𝑔[𝑥2] 𝐿𝑜𝑔[𝑥3] +

3.5837 𝐿𝑜𝑔[𝑥3]^2  

𝑆𝑂𝐿𝑁𝑅1 =  (19888.4 + 534928. 𝐿𝑜𝑔[𝑥1] + 844971. 𝐿𝑜𝑔[𝑥1]^2 +

354886. 𝐿𝑜𝑔[𝑥2] + 1.52099 ∗ 10^6 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥2] + 290885. 𝐿𝑜𝑔[𝑥2]^2 −

299945. 𝐿𝑜𝑔[𝑥3] − 973138. 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥3] − 505989. 𝐿𝑜𝑔[𝑥2] 𝐿𝑜𝑔[𝑥3] +

234980. 𝐿𝑜𝑔[𝑥3]^2)/(120332. +1.05746 ∗ 10^6 𝐿𝑜𝑔[𝑥1] −

408658. 𝐿𝑜𝑔[𝑥1]^2 − 273931. 𝐿𝑜𝑔[𝑥2] + 836878. 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥2] −

828633. 𝐿𝑜𝑔[𝑥2]^2 + 755219. 𝐿𝑜𝑔[𝑥3] − 1.0446 ∗ 10^6 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥3] −

702414. 𝐿𝑜𝑔[𝑥2] 𝐿𝑜𝑔[𝑥3] − 1.32095 ∗ 10^6 𝐿𝑜𝑔[𝑥3]^2)  

𝐹𝑂𝐸𝑁1 =  14.8728 − 8.90472 ∗ 10^ − 10 𝐸^(0.1 𝑥1) − 5.07018 ∗ 10^ −

6 𝐸^𝑥2 − 4.3921 𝐸^𝑥3  

𝐹𝑂𝐸𝑁𝑅1 =  (1.96044 ∗ 10^7 + 102897. 𝐸^(0.1 𝑥1) + 2.42599 ∗ 10^8 𝐸^𝑥2 +

1.29338 ∗ 10^7 𝐸^𝑥3)/(−1.87716 ∗ 10^8 + 10496.5 𝐸^(0.1 𝑥1) + 2.66814 ∗

10^7 𝐸^𝑥2 − 1.23906 ∗ 10^8 𝐸^𝑥3)  

𝑆𝑂𝐸𝑁1 =  13.2886 + 9.95255 ∗ 10^ − 9 𝐸^(0.1 𝑥1) − 1.49075 ∗ 10^ −

17 𝐸^(0.2 𝑥1) − 0.0000194884 𝐸^𝑥2 − 1.22525 ∗ 10^ − 10 𝐸^(2 𝑥2) −
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1.13984 ∗ 10^ − 13 𝐸^(0.1 𝑥1 + 𝑥2) + 2.7418 𝐸^𝑥3 − 5.1281 𝐸^(2 𝑥3) +

2.11787 ∗ 10^ − 9 𝐸^(0.1 𝑥1 + 𝑥3) + 0.0000317487 𝐸^(𝑥2 + 𝑥3)  

𝑆𝑂𝐸𝑁𝑅1 =  (1.08006 + 378205. 𝐸^(0.1 𝑥1) + 2.0972 ∗ 10^8 𝐸^(0.2 𝑥1) +

1653.03 𝐸^𝑥2 + 6.2088 ∗ 10^7 𝐸^(2 𝑥2) + 6.7891 ∗ 10^7 𝐸^(0.1 𝑥1 + 𝑥2) +

2.23283 𝐸^𝑥3 + 1.02865 𝐸^(2 𝑥3) + 273317. 𝐸^(0.1 𝑥1 + 𝑥3) −

3907.42 𝐸^(𝑥2 + 𝑥3))/(0.238536 − 3.59707 ∗ 10^6 𝐸^(0.1 𝑥1) + 2.19455 ∗

10^7 𝐸^(0.2 𝑥1) − 15111.3 𝐸^𝑥2 − 5.66467 ∗ 10^8 𝐸^(2 𝑥2) + 9.28326 ∗

10^7 𝐸^(0.1 𝑥1 + 𝑥2) − 0.225891 𝐸^𝑥3 + 0.720992 𝐸^(2 𝑥3) − 2.61312 ∗

10^6 𝐸^(0.1 𝑥1 + 𝑥3) + 35808.1 𝐸^(𝑥2 + 𝑥3))  

𝐿2 =  37.7458 − 0.239738 𝑥1 + 1.21893 𝑥2 + 84.6594 𝑥3  

𝐿𝑅2 =  (4.33801 ∗ 10^7 + 1.04446 ∗ 10^9 𝑥1 + 3.63882 ∗ 10^7 𝑥2 +

4.34938 ∗ 10^7 𝑥3)/(−8.47869 ∗ 10^8 + 7.67826 ∗ 10^7 𝑥1 − 3.82944 ∗

10^8 𝑥2 − 1.12546 ∗ 10^9 𝑥3)  

𝑆𝑂𝑁2 =  19.8069 + 0.0481983 𝑥1 − 0.000216207 𝑥1^2 + 0.0648245 𝑥2 +

0.000278626 𝑥1 𝑥2 − 0.119924 𝑥2^2 + 30.6067 𝑥3 − 0.811006 𝑥1 𝑥3 +

22.9276 𝑥2 𝑥3 − 113.022 𝑥3^2  

𝑆𝑂𝑁𝑅2 =  (840562. +3.03201 ∗ 10^8 𝑥1 + 3.07393 ∗ 10^9 𝑥1^2 + 1.78486 ∗

10^7 𝑥2 + 5.93576 ∗ 10^8 𝑥1 𝑥2 + 1.97985 ∗ 10^7 𝑥2^2 + 2.03089 ∗

10^6 𝑥3 + 2.70325 ∗ 10^8 𝑥1 𝑥3 + 2.06764 ∗ 10^7 𝑥2 𝑥3 + 125318. 𝑥3^2)/

(−1.61451 ∗ 10^7 − 5.08257 ∗ 10^9 𝑥1 + 2.50566 ∗ 10^8 𝑥1^2 − 3.36806 ∗

10^8 𝑥2 − 1.14631 ∗ 10^9 𝑥1 𝑥2 − 3.53178 ∗ 10^8 𝑥2^2 − 5.11783 ∗

10^7 𝑥3 − 6.8554 ∗ 10^9 𝑥1 𝑥3 − 5.40593 ∗ 10^8 𝑥2 𝑥3 − 3.2285 ∗ 10^6 𝑥3^2)  

𝐹𝑂𝑇𝑁2 =  0.867741 + 3.55931 𝐶𝑜𝑠[𝑥1] − 1.65152 𝐶𝑜𝑠[𝑥2] +

0.629997 𝐶𝑜𝑠[𝑥3] + 4.58265 𝑆𝑖𝑛[𝑥1] − 27.6931 𝑆𝑖𝑛[𝑥2] + 85.5825 𝑆𝑖𝑛[𝑥3]  

𝐹𝑂𝑇𝑁𝑅2 =  (−1.02431 ∗ 10^9 + 1.20758 ∗ 10^9 𝐶𝑜𝑠[𝑥1] − 8.34399 ∗

10^8 𝐶𝑜𝑠[𝑥2] − 9.91948 ∗ 10^8 𝐶𝑜𝑠[𝑥3] + 3.46424 ∗ 10^9 𝑆𝑖𝑛[𝑥1] + 6.15883 ∗

10^8 𝑆𝑖𝑛[𝑥2] − 2.91461 ∗ 10^8 𝑆𝑖𝑛[𝑥3])/(−8.78095 ∗ 10^7 + 1.024 ∗

10^8 𝐶𝑜𝑠[𝑥1] − 7.42341 ∗ 10^7 𝐶𝑜𝑠[𝑥2] − 8.40999 ∗ 10^7 𝐶𝑜𝑠[𝑥3] + 2.91992 ∗

10^8 𝑆𝑖𝑛[𝑥1] + 4.68161 ∗ 10^7 𝑆𝑖𝑛[𝑥2] − 3.18696 ∗ 10^7 𝑆𝑖𝑛[𝑥3])  
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𝑆𝑂𝑇𝑁2 =  1.80032 − 2.71109 𝐶𝑜𝑠[𝑥1] + 2.30504 𝐶𝑜𝑠[𝑥1]^2 +

2.87851 𝐶𝑜𝑠[𝑥2] − 3.89364 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥2] + 4.10302 𝐶𝑜𝑠[𝑥2]^2 +

1.88869 𝐶𝑜𝑠[𝑥3] − 2.87327 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥3] + 3.14924 𝐶𝑜𝑠[𝑥2] 𝐶𝑜𝑠[𝑥3] +

1.97834 𝐶𝑜𝑠[𝑥3]^2 + 1.86609 𝑆𝑖𝑛[𝑥1] − 2.80047 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥1] +

3.31754 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥1] + 1.93566 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥1] + 2.25734 𝑆𝑖𝑛[𝑥1]^2 +

4.77977 𝑆𝑖𝑛[𝑥2] − 2.84386 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥2] + 3.64954 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥2] +

6.24746 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥2] + 8.25001 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥2] − 22.107 𝑆𝑖𝑛[𝑥2]^2 −

11.2136 𝑆𝑖𝑛[𝑥3] + 26.3314 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥3] − 57.2579 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥3] −

11.1271 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥3] − 4.47435 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥3] −

513.298 𝑆𝑖𝑛[𝑥2] 𝑆𝑖𝑛[𝑥3] − 116.107 𝑆𝑖𝑛[𝑥3]^2  

𝑆𝑂𝑇𝑁𝑅2 =  (−5.33047 ∗ 10^9 + 1.65735 ∗ 10^10 𝐶𝑜𝑠[𝑥1] − 2.66822 ∗

10^9 𝐶𝑜𝑠[𝑥1]^2 − 1.88534 ∗ 10^10 𝐶𝑜𝑠[𝑥2] + 1.49222 ∗

10^10 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥2] − 4.18403 ∗ 10^9 𝐶𝑜𝑠[𝑥2]^2 − 2.09546 ∗

10^10 𝐶𝑜𝑠[𝑥3] + 1.63554 ∗ 10^10 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥3] − 1.85046 ∗

10^10 𝐶𝑜𝑠[𝑥2] 𝐶𝑜𝑠[𝑥3] − 5.14861 ∗ 10^9 𝐶𝑜𝑠[𝑥3]^2 + 3.40367 ∗

10^10 𝑆𝑖𝑛[𝑥1] − 1.66317 ∗ 10^10 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥1] + 3.12854 ∗

10^10 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥1] + 3.375 ∗ 10^10 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥1] − 2.66225 ∗

10^9 𝑆𝑖𝑛[𝑥1]^2 + 9.53746 ∗ 10^9 𝑆𝑖𝑛[𝑥2] − 6.82217 ∗ 10^9 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥2] +

8.28876 ∗ 10^9 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥2] + 9.42642 ∗ 10^9 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥2] − 1.25958 ∗

10^10 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥2] − 1.14643 ∗ 10^9 𝑆𝑖𝑛[𝑥2]^2 − 3.81103 ∗

10^9 𝑆𝑖𝑛[𝑥3] + 2.46615 ∗ 10^9 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥3] − 3.5472 ∗

10^9 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥3] − 3.7391 ∗ 10^9 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥3] + 3.87758 ∗

10^9 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥3] + 1.31258 ∗ 10^9 𝑆𝑖𝑛[𝑥2] 𝑆𝑖𝑛[𝑥3] − 1.81853 ∗

10^8 𝑆𝑖𝑛[𝑥3]^2)/(−3.31829 ∗ 10^9 + 9.87013 ∗ 10^9 𝐶𝑜𝑠[𝑥1] − 1.572 ∗

10^9 𝐶𝑜𝑠[𝑥1]^2 − 1.20891 ∗ 10^10 𝐶𝑜𝑠[𝑥2] + 8.91928 ∗

10^9 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥2] − 2.76365 ∗ 10^9 𝐶𝑜𝑠[𝑥2]^2 − 1.31081 ∗

10^10 𝐶𝑜𝑠[𝑥3] + 9.75742 ∗ 10^9 𝐶𝑜𝑠[𝑥1] 𝐶𝑜𝑠[𝑥3] − 1.2098 ∗

10^10 𝐶𝑜𝑠[𝑥2] 𝐶𝑜𝑠[𝑥3] − 3.23654 ∗ 10^9 𝐶𝑜𝑠[𝑥3]^2 + 1.92004 ∗

10^10 𝑆𝑖𝑛[𝑥1] − 9.60206 ∗ 10^9 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥1] + 1.71747 ∗

10^10 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥1] + 1.90062 ∗ 10^10 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥1] − 1.74629 ∗

10^9 𝑆𝑖𝑛[𝑥1]^2 + 5.15761 ∗ 10^9 𝑆𝑖𝑛[𝑥2] − 3.9909 ∗ 10^9 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥2] +

4.60054 ∗ 10^9 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥2] + 4.74153 ∗ 10^9 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥2] − 8.15273 ∗
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10^9 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥2] − 5.54637 ∗ 10^8 𝑆𝑖𝑛[𝑥2]^2 − 1.90395 ∗ 10^9 𝑆𝑖𝑛[𝑥3] +

1.34213 ∗ 10^9 𝐶𝑜𝑠[𝑥1] 𝑆𝑖𝑛[𝑥3] − 5.62073 ∗ 10^8 𝐶𝑜𝑠[𝑥2] 𝑆𝑖𝑛[𝑥3] − 1.87296 ∗

10^9 𝐶𝑜𝑠[𝑥3] 𝑆𝑖𝑛[𝑥3] + 2.4266 ∗ 10^9 𝑆𝑖𝑛[𝑥1] 𝑆𝑖𝑛[𝑥3] + 3.33102 ∗

10^9 𝑆𝑖𝑛[𝑥2] 𝑆𝑖𝑛[𝑥3] − 8.17469 ∗ 10^7 𝑆𝑖𝑛[𝑥3]^2)  

𝐹𝑂𝐿𝑁2 =  214.956 − 38.1575 𝐿𝑜𝑔[𝑥1] + 10.5513 𝐿𝑜𝑔[𝑥2] + 10.4834 𝐿𝑜𝑔[𝑥3]  

𝐹𝑂𝐿𝑁𝑅2 =  (118926. +384387. 𝐿𝑜𝑔[𝑥1] − 86839. 𝐿𝑜𝑔[𝑥2] −

437235. 𝐿𝑜𝑔[𝑥3])/(−882810. +193511. 𝐿𝑜𝑔[𝑥1] − 48974.8 𝐿𝑜𝑔[𝑥2] −

69419.9 𝐿𝑜𝑔[𝑥3])  

𝑆𝑂𝐿𝑁2 =  67.652 − 6.48765 𝐿𝑜𝑔[𝑥1] − 5.30895 𝐿𝑜𝑔[𝑥1]^2 +

17.3755 𝐿𝑜𝑔[𝑥2] + 7.22388 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥2] + 1.96101 𝐿𝑜𝑔[𝑥2]^2 −

6.81263 𝐿𝑜𝑔[𝑥3] − 11.4682 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥3] + 24.576 𝐿𝑜𝑔[𝑥2] 𝐿𝑜𝑔[𝑥3] −

5.256 𝐿𝑜𝑔[𝑥3]^2  

𝑆𝑂𝐿𝑁𝑅2 =  (1.43543 + 9.37542 𝐿𝑜𝑔[𝑥1] + 8.51279 𝐿𝑜𝑔[𝑥1]^2 +

5.29568 𝐿𝑜𝑔[𝑥2] + 15.7347 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥2] + 2.58494 𝐿𝑜𝑔[𝑥2]^2 −

1.32302 𝐿𝑜𝑔[𝑥3] − 11.917 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥3] − 2.9905 𝐿𝑜𝑔[𝑥2] 𝐿𝑜𝑔[𝑥3] +

2.68263 𝐿𝑜𝑔[𝑥3]^2)/(−1.61663 − 21.9001 𝐿𝑜𝑔[𝑥1] + 7.59261 𝐿𝑜𝑔[𝑥1]^2 −

10.9758 𝐿𝑜𝑔[𝑥2] − 4.71163 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥2] − 1.22313 𝐿𝑜𝑔[𝑥2]^2 +

13.5309 𝐿𝑜𝑔[𝑥3] + 2.75376 𝐿𝑜𝑔[𝑥1] 𝐿𝑜𝑔[𝑥3] − 18.9616 𝐿𝑜𝑔[𝑥2] 𝐿𝑜𝑔[𝑥3] −

0.106591 𝐿𝑜𝑔[𝑥3]^2)  

𝐹𝑂𝐸𝑁2 =  −61.6928 − 1.48773 ∗ 10^ − 7 𝐸^(0.1 𝑥1) + 0.0000450478 𝐸^𝑥2 +

73.9162 𝐸^𝑥3  

𝐹𝑂𝐸𝑁𝑅2 =  (4.76996 ∗ 10^6 + 9.75278 ∗ 10^8 𝐸^(0.1 𝑥1) − 2.25083 ∗

10^9 𝐸^𝑥2 + 7.28009 ∗ 10^6 𝐸^𝑥3)/(−9.66769 ∗ 10^7 + 4.83071 ∗

10^7 𝐸^(0.1 𝑥1) − 1.89945 ∗ 10^8 𝐸^𝑥2 − 1.62937 ∗ 10^8 𝐸^𝑥3)  

𝑆𝑂𝐸𝑁2 =  7.50008 − 3.10198 ∗ 10^ − 8 𝐸^(0.1 𝑥1) − 5.76995 ∗ 10^ −

16 𝐸^(0.2 𝑥1) − 0.000404145 𝐸^𝑥2 − 2.49072 ∗ 10^ − 9 𝐸^(2 𝑥2) + 3.76949 ∗

10^ − 13 𝐸^(0.1 𝑥1 + 𝑥2) + 6.81228 𝐸^𝑥3 + 6.09743 𝐸^(2 𝑥3) − 3.53662 ∗

10^ − 8 𝐸^(0.1 𝑥1 + 𝑥3) + 0.000739806 𝐸^(𝑥2 + 𝑥3)  
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𝑆𝑂𝐸𝑁𝑅2 =  (1.07739 + 365611. 𝐸^(0.1 𝑥1) + 2.23425 ∗ 10^8 𝐸^(0.2 𝑥1) +

463.643 𝐸^𝑥2 + 1.37486 ∗ 10^7 𝐸^(2 𝑥2) − 1.33107 ∗ 10^8 𝐸^(0.1 𝑥1 + 𝑥2) +

2.46546 𝐸^𝑥3 + 1.16555 𝐸^(2 𝑥3) + 552231. 𝐸^(0.1 𝑥1 + 𝑥3) +

16711.7 𝐸^(𝑥2 + 𝑥3))/(−0.566628 − 7.40058 ∗ 10^6 𝐸^(0.1 𝑥1) + 1.10932 ∗

10^7 𝐸^(0.2 𝑥1) − 11622.5 𝐸^𝑥2 − 3.71294 ∗ 10^8 𝐸^(2 𝑥2) + 1.95489 ∗

10^7 𝐸^(0.1 𝑥1 + 𝑥2) − 8.36017 𝐸^𝑥3 − 2.8891 𝐸^(2 𝑥3) − 1.23064 ∗

10^7 𝐸^(0.1 𝑥1 + 𝑥3) − 493612. 𝐸^(𝑥2 + 𝑥3))  
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Publications from the Thesis 

Conference Papers 

1. Aydın KB, Aydin L, Güneş F. Stochastic Optimization of TiO2-Graphene 

Nanocomposite by Using Neuro-Regression Approach for Maximum Photocatalytic 

Degradation Rate. ISSC2021: Proceedings of the 5th International Students Science 

Congress; 2021 May 21-22; Izmir, Turkey. 345-351. 

2. Aydın KB, Aydin L, Savran M, Sayı H, Ayakdaş O, Artem HS. Stochastic 

Optimization of Graphene Sheets Subjected to Drilling Operation Using Neuro-

Regression Approach for Maximum Mechanical Strength. ISSC2020: Proceedings of 

the 4th International Students Science Congress; 2020 Sep 18-19; Izmir, Turkey. 281-

289. 

Journal Articles 

1. Aydın KB, Aydin L, Güneş F. Modeling and Optimum Design of Carbon 

Nanotube/Polyvinyl Alcohol Hybrid Nanofibers as Electromagnetic Interference 

Shielding Material. Integrating Materials and Manufacturing Innovation 2022; 

11:391–406. https://doi.org/10.1007/s40192-022-00270-7 

Projects 

1. Grafen Tabanlı Nanokompozit Yapının Sentezi, Optimizasyonu ve Elektromanyetik 

Dalga Soğurma Özellikleri (2021-GAP-MÜMF-0042) 

2. Grafen Tabanlı Nanokompozitlerin Elektromanyetik Dalga Soğurma Özelliklerinin 

Stokastik Yöntemlerle Geliştirilmesi (2022-TYL-FEBE-0018)  
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